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Abstract

This thesis provides a thorough review of conventional matched-filter radar

theory as it applies to aerosol sensing lidar. Basic matched-filter radar theory and

the complex, dense aerosol target model eventually lead to a general derivation of the

matched-filter radar receiver response to a dense aerosol target environment. The

matched-filter response is obtained in terms of a two dimensional convolution of the

target scattering function and the radar ambiguity function. The range and radial

velocity resolution of various radar signals were compared using the matched-filter

radar receiver and scattering function models. Pulse compression radar signals were

compared to the simple radar pulses currently in use with existing lidar systems,

and in each case, the pulse compression radar signal did not provide a significant

improvement in combined range and radial velocity resolution.
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Pulse Compession for Aerosol Ranging With Coherent

Pulse-Doppler Lidar Systems

I. Introduction

1.1 Background

Rapid advances in coherent laser pulse-Doppler radar, commonly known as

coherent lidar, have resulted in numerous wind sensing applications such as mea-

surement of wind velocity profiles of severe storms, clear air turbulence (CAT), wind

shear, and aircraft wake vortices. Some of these applications, such as aircraft wake

vortex detection and wind shear detection, require range resolutions which exceed

the capabilities of current lidar systems. Extending classical pulse compression tech-

niques originally developed for conventional radio frequency radar to lidar systems

was believed to offer the possibility of improving the combined range and velocity

resolution in comparison to current lidar systems which employ simple unmodulated

radar pulses.

1.2 Problem

Present "state of the art" lidar systems for wind sensing with a required velocity

resolution of approximately 1 m/s are limited in range resolution to approximately

200 m. The objective of this thesis was to research classical pulse compression

techniques to determine their potential for improving the combined range and radial

velocity resolution of lidar systems. Four basic classes of radar signal were identified.

The resolution in combined range and radial velocity for each class of radar signal

was determined in terms of the conventional matched-filter radar receiver response

to a dense aerosol target environment. The resolution performance for each class of



pulse compression radar signals was thoroughly reviewed and compared to the simple

unmodulated radar pulse. The thesis research showed that for a dense aerosol target

environment, pulse compression radar signals do not provide improved resolution in

combined range and radial velocity in comparison to the simple unmodulated radar

signals currently in use with existing lidar systems.

1.3 Summary of Current Knowledge

Lidar systems have become a powerful tool for the measurement of radial wind

velocities with numerous wind sensing applications. Exteisive research efforts which

began in the late 1960s and have continued to the present have resulted in lidar sys-

tems with C0 2 continuous wave (CW) transmitters which are amplitude modulated

to obtain pulse energies up to IJ with pulse repetition frequencies (PRF) up to 50

Hz. A typical system operating with a C0 2 wavelength of 10 im and with a pulse

duration of 1 ps can attain a radial velocity resolution of approximately 1 m/s and

a radial range resolution of approximately 150-300 m (24). These systems employ

optical heterodyne detection which requires a monochromatic CW laser source which

is spatially and temporally coherent. The coherence time of the laser transmitter

must be greater than the coherence time of the received signal which is determined

by atmospheric conditions. The atmosphere is modeled as a diffuse target which

consists of a large number of very small aerosol particles such as dust and water

droplets. When a pulse of coherent laser energy is transmitted to the atmosphere,

the pulse irradiates a volume of air (defined by the beam width and pulse duration)

which consists of a large number of these aerosols. According to Mie theory, the

backscattered radiation of the received signal is due primarily to suspended aerosols

with diameters within one order of magnitude of the laser transmitter wavelength

(18). For example, with a 10 ym wavelength transmitter, the backscatteredradia-

tion is due to aerosols with diameters of approximately 1-3 pm (24, 18). Doppler

shift measurements of the backscattered optical signal as a function of time result in
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range-resolved measurements of radial (line of sight) velocity.

The optical signal is heterodyned to an electrical signal where conventional

Doppler signal processors originally developed for millimeter-wave radar are em-

ployed. The received optical signal backscattered from the range resolved volume of

aerosol particles may be processea to obtain the velocity mean and velocity standard

deviation using either time domain, pulse-pair processing techniques or frequency do-

main, fast fourier transform (FFT) techniques. The most common signal processing

approach requires a complex receiver structure of in-phase and quadrature compo-

nents to determine the correct target velocity direction relative to the lidar followed

by transient digitizers and a pulse-pair or spectral processor.

1.4 Assumptions

A considerable degree of research concerning all aspects of lidar wind sensing

has occurred over the past two decades, and models for atmospheric effects and

photodetector quantum noise effects have been rigorously developed. Atmospheric

models to account for attenuation, speckle, and refractive turbulence are assumed

adequate for this research effort. Considerable agreement found in the literature

indicates the validity of these models. The net effect of the atmospheric models is

a received optical signal which is statistically modeled as a time varying Rayleigh

phasor with a Rayleigh-distributed amplitude and a uniformly-distributed phase.

The noise current of the quantum noise limited photodetector is statistically modeled

as additive white Gaussian noise over the narrow bandwidth of the detector, and

the photodetector output current due to the received optical signal is modeled by

a narrowband Gaussian random process (24). Errors which may arise from these

statistical models or simplifications of the models are accounted for in the analysis

as necessary.

In addition to assumptions related to the atmospheric and photodetector sta-

tistical models, two additional assumptions are made. The first assumption is based
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on Biernson and Lucy's comparison between coherent and direct detection lidar per-

formance which shows that for low signal to noise ratio (SNR < 1) coherent (hetero-

dyne) detection provides superior detector output SNR performance (4). Therefore,

since low SNR is prevalent in wind sensing applications, the analysis will be based

only on a heterodyne detection model. The second assumption is based on a review

of current lidar transmitters which indicates that C0 2 lidar transmitters operating

at 9-12 pm wavelengths represent the most mature transmitter technology available

for lidar today. Therefore, the analysis will be based only on a C02 transmitter

model which operates with a wavelength of 9-12 jim.

1.5 General Approach and Presentation

Results of this thesis research provide a thorough review of conventional matched-

filter radar theory as it applies to an aerosol sensing lidar. Chapter two provides an

historical perspective of lidar development along with a brief discussion of current

lidar systems and signal processing techniques. Chapter 3 provides a discussion of

the basic theory of conventional matched-filter radar receivers, the complex aerosol

target model, and the matched-filter radar receiver response to the aerosol target

model. In Chapter 4, each of the four basic classes of radar signal are evaluated in

terms of their resolution performance in a dense aerosol target environment.
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II. A Review of Lidar Developments

Coherent Lidar systems have become a powerful tool for the measurement of

radial wind velocities with numerous wind sensing applications. This chapter pro-

vides a basic overview of coherent lidar technological and theoretical developments

occurring over the past two decades. The chapter begins with a discussion of lidar

historical developments, followed by a simplified lidar system description, a brief dis-

cussion of lidar theory, and finally, a discussion of lidar signal processing techniques.

2.1 Historical Development of Lidar Systems

In 1980, Bilbro of the NASA Marshall Space Flight Center (MSFC) provided

a detailed overview of the historical developments of atmospheric laser Doppler ve-

locimetry which occurred from 1964 to 1980 (6). According to Bilbro, laser Doppler

velocimetry theory based on the measurement of the mean frequency of a backscat-

tered target frequency spectrum was first described in 1964. During the early 1970s,

the first demonstrated measurements of atmospheric wind velocity occurred using

continuous wave (CW) carbon dioxide CO2 laser systems with operating ranges of

approximately 200 m (6, 22). These initial CO 2 CW laser systems were used in a

variety of applications in wind sensing such as measuring the wind velocity profiles

of wind shear, dust devils, tornadoes, and aircraft wake vortices (6, 22, 32, 17).

During the 1970s and soon after CW systems were designed, the desire to

measure clear air turbulence (CAT) motivated the development of coherent pulsed-

Doppler lidar systems (6, 24). These ysterns offered a tenfold increase in range

performance. The first air-borne pulsed lidar system was built for NASA/MSFC

and employed a master oscillator power amplifier (MOPA) transmitter configura-

tion capable of attaining pulse energies up to 30 mJ and operating ranges up to 6

km (5, 7). The system was later upgraded with the capability of generating two-

dimensional wind fields horizontal to the aircraft. The technique for generating these



two-dimensional wind profiles was based on the measurements of wind velocity at the

same location from two directions. This upgraded airborne lidar system was flown

on the NASA CV-990 during several studies in the early 1980s which successfully

measured two-dimensional wind profiles surrounding severe storms (5, 7).

According to Menzies and Hardesty, the development of pulsed transversely-

excited atmospheric pressure (TEA) C02 laser transmitters was a major milestone

of Doppler lidar technological development, and in 1981 the National Oceanic At-

mospheric Administration (NOAA) began using the first pulsed TEA C02 system

to measure atmospheric wind velocities (24). This TEA laser system produced a

pulse energy of 100 mJ with a pulse repitition frequency (PRF) of 10 Hz. In a

continuing effort to meet the pulse energy requirements of a space-based lidar sys-

tem, the NOAA Wave Propogation Lab (WPL) later upgraded their hybrid TEA

laser transmitter lidar system with an injection-locked TEA laser capable of 1 J

pulse energies with a maximum PRF of 50 Hz (13). The NOAA system with the

injection controlled TEA transmitter and velocity azimuth display (VAD) scanning

techniques to generate three-dimensional wind velocity profiles with color graphics

displays represents a "state of the art" lidar system which has been used in numerous

wind sensing studies-(24).

A major application and motivation for the development of lidar technology
has been the concept of an earth orbiting lidar system to generate globaZl three-

dimensional wind velocity profiles (24, 10). Numerous feasability studies, preliminary

design specifications, and advances in coherent pulse Doppler lidar technology during

the past decade have resulted in a baseline lidar system called the Laser Atmospheric

Wind Sounder (LAWS) which is scheduled to become part of NASA's Earth Orbiting

System (EOS) in the late 1990s (23, 27, 40). The baseline LAVS system design

specifications include a C02 laser transmitter operating at a wavelength of 9.11 /Lm

with 3 ps pulse duration, 10 J pulse energy, and a PRF of up to 10 Hz (24, 10).

More recent developments in solid-state laser transmitters for pulsed lidar may result
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in a solid-state coherent lidar implementation for LAWS (10, 2, 9). For example,

Coherent Technologies Inc. has recently developed and demonstrated a partially

solid-state Nd:YAG laser transmitter design (19). Rapid advances in lidar technology

have resulted in accurate and reliable coherent pulsed-Doppler lidar systems for

three-dimensional wind field measurements with the eventual goal of a space-based

lidar Fystem generating global three-dimensional wind velocity profiles.

2.2 Lidar System Description

Several authors have described the theory of coherent laser pulsed-Doppler

radar developed more than two decades ago (4, 1). The simplified block diagram of

Figure 1 illustrates a typical coherent lidar system employing a MOPA configuration.

A signal trace through the various components of Figure 1 will simplify the system

description.

Within the MOPA configuration, the spatially coherent, monochromatic CW

optical or infrared output beam is amplitude modulated and power amplified to form

an optical pulse train signal with a carrier frequency equal to the frequency of the

master oscillator. The optical signal is transmitted through the transmit/receive

optical duplexer to the telescope and possibly through a scanning mirror to the

target which in this application is the aerosols suspended within the atmosphere.

The switching electronics of the optical duplexer establishes the time measurements

for range gating and protects the detector from the high transmission intensities.

In a monostatic radar configuration as illustrated in Figure 1, the same telescope

receives the optical signal backscattered from the target. The velocity of the target

will cause a shift of the mean frequency of the received signal frequency spectrum

according to the well known Doppler equation:

Fd = 2V/A (1)

7



Atmosphere

Telescope

M. O.P.A. Transmit

* [Receive

Frequency Photo
Translator Detector

Signal
Processor

Computer/
Display

Figure 1. Simplified Block Diagram of a Coherent Pulsed-Doppler Lidar
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where F is the Doppler frequency shift, V is the radial velocity of a target, and A is

the wavelength of the signal transmitted. Part of the CW master oscillator beam is

split-off, frequency translated, and optically summed with the received target echo

signal, and the optically mixed signal is focused onto the photodetector (4).

The photodetector performs as a square-law device with negligible second order

terms converting optical energy to electrical energy and creating sum and difference

frequency terms (4). The frequency bandwidth of the detector limits the output to

only the frequency difference terms; therefore, the output of the photodetector is an

electrical signal with a radio frequency (RF) spectrum and a mean frequency equal

to the difference between the received signal frequency and the frequency translated

master oscillator frequency. This detection procedure is commonly known as optical

heterodyne detection.

A well designed coherent optical receiver is a shot noise or quantum noise

limited receiver in which the primary source of noise is the shot noise generated

by the master oscillator. The additive shot noise of the photodetector is modeled

statistically as additive white Gaussian noise over the narrow bandwidth of the

detector. With a monochromatic CW oscillator of sufficient power so that other

noise sources such as dark current noise and optical background radiation become

negligible, the optical receiver can achieve an average signal to noise ratio expressed

as:

SNR R' (2)
hvB

where

SNR = average signal to noise ratio

77 = photodetector quantum efficiency

Pr = average power of the received signal with the same

polarization as the master oscillator signal (W)

9



h = Planck's constant (J.s)

v = optical frequency incident on photodetector (Hz)

B = photodetector bandwidth (Hz)

According to Bachman (1:11-16) when the target echo signal is a coherent,

normally incident plane wave, the output of the photodetector is an ensemble average

electrical current expressed as:

i(t) - {Pmo + P,(t) + 2[PmoP,]2 cos[27r(fmo - f,)t + 0r(t)]} (3)

where

7/ = photodetector quantum efficiency

q = electronic charge (C)

Pm0  = power of the master oscillator CW signal (W)

Pr(t) = power of the received signal with the same

polarization as the master oscillator signal (W)

fm o = frequency of master oscillator signal plus offset (Hz)

fT = frequency of received signal (Hz)

0r(t) = phase difference between the received signal

and the master oscillator signal (rads)

The second term of Equation (3) is the frequency modulated signal of interest.

After heterodyning, the electrical signal is input to the signal processor and

computer where either time domain or frequency domain techniques originally de-

veloped for millimeter-wave radar are employed. Using classical time domain and

frequency domain signal processing techniques, target information such as range and

range-rate is obtained. After accounting for atmospheric effects and the receiver SNR

from Equation (2) which are different from millimeter-wave radar receivers, Bach-
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man concludes that the statistical problem of accurately measuring target range and

target radial velocity with a coherent lidar is essentially the same as the detection

problem using conventional millimeter-wave radar.

2.3 Lidar Theory

Conventional millimeter-wavelength and laser-wavelength pulse-Doppler radars

measure the phase difference between subsequently transmitted and reflected pulses

to determine hard-target range and radial velocity; whereas, with a diffuse target

such as the atmosphere, Doppler lidar measures the Doppler shift of each received

pulsed defined by the range-gate of the system. A hard-target is simply defined as a

target which is smooth on the scale of the laser wavelength transmitted and reflects

the transmitted signal without amplitude or frequency distortion. A diffuse target

is rough on the scale of the transmitted laser wavelength which results in multiple

reflections of the transmitted signal. Several authors have provided the radar range

equation which describes the hard-target detection scenario (37, 1, 20) For the hard-

target case where the target is larger than the radar beamwidth and normal to the

plane of the optical beam, the radar range equation can be expressed as:

PI(t) = Pt(t - 2R/c)pA?7seexp [-2jc(R')dR' (4)

where

P,(t) = expected value of the received power with the

same polarization as the master oscillator (W)

Pt(t) = range-delayed power profile of the transmitted signal (W)

R = range to the target (m)

c = speed of light (m/s)

p = target reflected power per steradian (sr) divided by the

incident power (1/sr)
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Ae = effective area of the antennae aperture (M2 )

r/se = optical system efficiency

a(R) = two-way extinction coefficient (1/m)

In Equation (4) above, some simplifications have been made. The received

signal power P,.(t) represents an average power, and its actual value is slightly less

when the atmospheric effects of speckle pattern fluctuation and refractive turbulence

are included. For hard-target detection with sufficient SNR, turbulence effects and

the aerosol volume backscatter coefficient 3(R) (1/mx 1/sr) become negligible. The

power profile of the return signal range delayed in time is the same as the transn .itted

power profile; however, for the case of a diffuse target such as a volume of aerosols,

the returned signal power profile changes significantly.

For the diffuse target case, the radar range equation (20:2) can be expressed

as:
= C)/2 Pj(t - 2R/c)#(R) Anr exp[-2] a(R')d] dR (5)sot =J(t-7,)/2 T

where r is the pulse duration. Again, the effect of turbulence has been ignored. If

strong turbulence is present, an additional turbulence factor to reduce P, is required.

The ensemble average power profile P,(t) depends on the cumulative effect of the

backscattered radiation from a large number of aerosols within the illuminated vol-

ume which is defined by the beam width and the pulse duration. The integration

over R of Equation (5) indicates that at time t, the aerosols within a slab of atmo-

sphere of thickness cr/2 and centered at R = c(t/2 - r/4) backscatter radiation to

form the power profile P,.(t) (20). Therefore, the range resolution defined by cr/2

is relatively coarse compared to a conventional pulse detection Doppler radar. For

a typical CO2 transmitter with a pulse duration of 1 Its, the range resolution is

approximately 150 m. If the pulse duration is reduced to improve range resolution,

12



the resultant spread of the frequency spectrum ui the transmitted signal will result

in a significant loss of frequency (velocity) resolution.

Therefore, the classical trade-off between range and velocity resolution as de-

termined by the pulse duration of the transmitted signal exists for lidar diffuse target

applications as well as conventional Doppler radar hard-target applications. Accord-

ing to Menzies and Hardesty, the accuracy of Doppler lidar velocity measurements

depend on two fundamental parameters: the SNR and the spectral width of the

backscattered signal (24).

2-.4 Lidar Signal Processing

Although this thesis does not directly apply lidar signal processing techniques,

a brief introduction to current lidar wind sensing signal processing techniques is

given to provide a complete overview of lidar theory. Current lidar wind sensing sys-

tems typically employ three stages of signal processing: amplification and complex

demodulation, analog to digital (A/D) conversion, and either frequency domain or

time domain digital signal analysis. After the received signal from the photodetector

is amplified, filtered, converted to quadrature components, and digitized, the signal

parameters of interest are estimated using one of the two signal processing techniques

developed. These two techniques are Fourier spectral analysis and c( ariance analy-

sis. Fourier spectral analysis is a relatively straight forward method of obtaining an

estimate of the power spectral density (PSD) of the received signal which is referred

to as a periodogram. Three parameters of the periodogram of primary interest are

the following: the mean power, the mean frequency, and the frequency width. Ili

comparison to Fourier spectral analysis, the covariance technique is a less compu-

tationally intense method of obtaining estimates of these three parameters. In this

section, complex demodulation, A/D conversion, and PSD parameter estimation for

current lidar systems are briefly reviewed.
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Complex demodulation structures such as the one illustrated in Figure 2 typi-

cally consist of a bandpass filter broad enough to receive the Doppler-shifted signal

S', (t) from the photodetector output. The signal s,, (t) is filtered and amplified to

produce the intermediate signal s, 2(t). The signal s?2(t) is divided into two chan-

nels called the I and Q channels for in-phase and quadrature respectively. Mixing

s, 2(t) with the single frequency terms sin(27rfot) and cos(27rfot) and low pass fil-

tering forms the in-phase and quadrature components of s,2(t). The low pass filter

(LPF) of each channel preserves the frequency difference signals and eliminates the

frequency sum signals associated with the mixing process. The mixing and filtering

of s 2 (t) to obtain the I and Q components of sr2( ) provides a means of determining

the direction of the radial velocity relative to the lidar. After sampling the I and Q

channels, the digital output signal can be written as

s, 3(nT,) = i(nT) + q(nTL,) (6)

where T, is the sampling period and n = 0,1, ..., N - 1. The digitized output signal

Sr3 (nT) is sent to a computer with the software routines necessary for either spectral

or covariance processing to estimate the signal parameters of interest.

First consider the case of Fourier spectral processing. Discrete Fourier trans-

form (DFT) methods are employed to obtain the periodogram for each range bin of

Sr3(nT,). The width of the range bin for each periodogram derived is determined by

the number of digital samples N of the DFT. Coherent Technologies Incorporated

(CTI) has developed a Fourier spectral processor for lidar wind sensing. The spec-

tral signal processing of the CTI lidar (42:41-42) can be summarized in the following

steps:

Step 1. Obtain the DFT (nominal length N = 128 samples) of s,.3 (nT,) expressed

as: N-i

Z (kfres) = s,3(nT,) exp (-j2rnTkfres) (7)
n=O

14



cos(27rfot)

x LPF A/D i(mT,)

x LPF A/D q(mT,)

sin(27rfot)

Figure 2. Complex Demodulator

where fres =1/NT, and k = 0,1,...,N- 1.

Step 2. For each range bin, determine the periodogram expressed as

S (kfres) = L" IZ(kfres)12  (8)
N

Step 3. Store the periodogram for each range bin in memory, transmit additional

pulses (perhaps as many as 1000) and repeat the process storing all periodogram

data in memory.

Step 4. After transmitting, processing, and storing the data during the time interval

in which the random process describing the backscattered signal is assumed station-

ary (refer to Chapter 3 for details), the periodogram data can be edited and averaged

to eliminate spurious signals. The edited and averaged periodogram for each range

b~n designated as 3(kfics) for a large number of averaged pulses is expected-to yield

a symmetric Gaussian spectrum. Therefore, the central moments of 3(kfres) yield

the desired signal parameters of .ean power, mean Doppler frequency, and Doppler

variance.
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Step 5. Compute the first three central moments of 3 (kfres). The zero moment

estimate is expressed as
N-I

P(R) = -g(kfres) (9)
k=O

where P(R) represents the estimated average power backscattered from range bin R.

The range bin R is defined as R = (c/2)(N x T.). The estimate of the first moment

of 3 (kfres) converted to radial velocity coordinates is expressed as

-A L-m 1 km+ M

=(R) (k - km) [modN(k)] (10)
2N iT. P(R)T.' km- 2 m~mdNkI

where A is the wavelength transmitted and km = kmax, the spectral coefficient of

the greatest magnitude. V,(R) is the estimated average radial velocity at a given

range bin. The estimate of the second central moment or the variance of 3 (kfres)

for each range bin is expressed as

A2  km+ 2VRT 2

&2(R) = 4P(-)T k + N+ Rw ) [mod.(k)] (11)

The estimate of the velocity width is given as

&2 12(12)
&v(R) = [ V(R)]11 2

The first three moment estimates of 3 (kfres) designated as P(R), V,(R), and &y(R)

provide the information of interest. The first three moments provide the mean power

estimate which indicates the aerosol density, the mean aerosol radial velocity estimate

which indicates the mean radial wind velocity, and the spectral width estimate which

indicates the degree of relative wind velocity due to atmospheric turbulence.

Next consider the covariance processing technique. This technique is analogous

to the pulse-pair signal processor implemented in conventional microwave, Doppler

meteorological radar. Using the single-lag autocovariance processor (SLA) (11:91-
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119) one obtains the first three estimated moments of the received signal PSD.

The instantaneous power backscattered can be expressed in terms of the squared

components of s,,(nT) due to pulse m as

P.(nT) = I2(nT.) + Q2(nT) (13)

Averaging the instantaneous samples of Pm(nT) determines the mean backscattered

signal power expregsed as

P(R) = f -1 Pm-lT (14)
m=O n0O

where

P(R) = the estimate of average power at range bin R (W)

R = the range bin width where R = (c/2)(N x T,)

N = number of digital samples within a range bin

M = number of pulses averaged

The average signal power estimate less the white Gaussian noise term N of the

photodetector can be expressed as

(R)= P(R)-N (15)

From Doviak and Zrnic (11:91-119), the SLA processor forms an estimate of the

complex autocorrelation function expressed as

1 Nv-I
!?(T,) = _,r3 (nT,)s 3 [(n + 1)T] (16)

n=1
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For symmetric spectra, the unbiased mean radial velocity estimate can be expressed

in terms of the argument of the complex autocorrelation function estimate !(T,) as

V )= -arg {R(=(17)4 T,ar

The spectral width 6v of an assumed symmetric Gaussian spectrum can be expressed
in terms of fA(T) and S(R) of Equations (15) and (16) as

= 3 2 r _ _ _ _ 1/2 F ( _ _ _ _

0V~~ f?(T-) sg ~in RTsIii(s

where the sgn term identifies possible negative terms due to low signa.l-to-noise ratio.

For more details of the derivations to obtain Equations (17) and (18), refer to the

text of Doviak and Zrnic (11:91-11).

There are advantages and disadvantages associated with each signal processing

technique. For more detailed discussions of the variances associated with the spectral

and covariance estimators and comparisons of each in terms of their advantages and

disadvantages, refer to the references provided (11, 42, 36).

When implementing either processing technique, the lidar range resolution is

a function of the range bin length R with N samples, the pulse duration T, and

the bandwidth B of the receiver electronics. For example, the CTI lidar (42:41)

operates with the following nominal aerosol measurement parameters: T = 11s,

T, = 1Ons, and N = 128 samples centered at each range bin. With the CTI system,

computing the first three moments of the periodogram (as in Steps 1-5) provides a

range resolved profile of the wind the lidar pulse encounters as it propogates through

the atmosphere. The range bin consisting of 128 samples spaced 1.5 m apart in range

forms a range bin with of R = (c/2)(N x T,) = 192m. The samples taken at each

range bin must occur within the coherence time of the received signal; otherwise,

random modulation of the received signal broadens the frequency spectrum. This
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aspect of the backscattered signal is discussed in more detail in Chapter 3.

Sampling in range to form the range bin reduces the range rsolution of the

system because the time duration required to form the N sample range bin R results

in samples from a pulse which has propogated in range. In other words, during the

time required to obtain the 128 samples within a range bin, the pulse effectively

smears through additional aerosol scatterers to form a larger scattering volume. The

scattering volume is defined in terms of the lidar beamwidth and the spatial extent

of the transmitted pulse expressed as cT/2. In addition, the bandwith of the lidar

will determine the degree of spatial averaging of the scattering volume. In other

words, a finite bandwidth receiver averages the backscattered signal. Therefore, due

to pulse width and bandwidth constraints of the lidar system, range resolution is

typically greater than the range bin width R defined by the DFT length N. Range

resolution is discussed in greater detail in Chapters 3 and 4.

This section has provided a basic overview of existing lidar signal processing

techniques for the dense aerosol target environment. It can be shown that Fourier

spectral processing is comparable to approximate matched-filter radar receivers when

the spectral coefficients of the DFT are equally weighted and the DFT length is

comparable to the time duration of the transmitted rectangular pulse (14:82-84). In

the next chapter, the theory of matched-filter radar as it applies to a dense aerosol

target environment is developed, and matched-filter signal processing is compared

to the Fourier spectral processing technique.
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Iii. Theory and Methods

3.1 Introduction

The primary purpose of this thesis effort is to consider alternative conventional

radar signals to the simple unmodulated pulse currently in use with existing lidars

to determine whether these alternative signals offer some means of improving the

resolution of aerosol measurements. To accomp!*Lh this purpose, two general models

are required: a model of the general lidar receiver and a model to describe the aerosol

target. Section 3.2 discusses the basic theory of matched-filter (MF) radar receiver

design. Section 3.3 describes resolution properties of the receiver in terms of the radar

ambiguity function. Section 3.4 characterizes the complex target which consists of a

dense array of point targets distributed in range and frequency. And finally, Section

3.5 combines these two models to describe the general matched-filter square-law

receiver (MFSLR) response to the complex target. The developments presented in

Sections 3.2 through 3.5 provide the essential tools necessary for determining range

and velocity resolution of various radar signals with respect to the aerosol, dense

target model.

3.2 Matched-Filter Theory

Development of the matched-filter receiver for the aerosol sensing lidar was

chosen because it was seen to provide the simplest and most commonly employed

method of evaluating various signals to determine their measurement capability with

respect to a myriad of possible target scenarios. Throughout the history of radar

development, the ambiguity function based on the matched-filter response has been a

fundamental measurement tool to describe radar performance in terms of resolution,

accuracy, and ambiguity. The matched-filter receiver is designed to provide optimal

signal detection and parameter estimation of an idealized point target of unknown

range and radial velocity in white Gaussian noise as illustrated in n imerous texts
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(38, 26). According to Van Trees (39:276-279) the matched-filter receiver followed

by a square-law envelope detector will provide the maximum-likelihood estimates of

point target range and radial velocity when the receiver noise is Gaussian. Whether

the matched-filter receiver followed by a square-law envelope detector is the optimal

receiver in a dense target environment such as aerosols is less clear as Rihaczek and

Van Trees indicate (39, 30). However, a basic assumption of this thesis effort is to

determine resolution performance in terms of a conventional matched-filter radar

receiver design.

Consider the simplified radar model where the target is assumed to be a sin-

gle point target. If the target is in motion, the received signal is represented as a

time-delayed, Doppler-shifted version of the transmitted signal corrupted by white

Gaussian noise from the shot-noise limited photodetector. For this model, it is as-

sumed that the point target radial velocity remains constant over the pulse duration.

In other words, higher order target acceleration terms are negligible. (30:56-65) Thus

the transmitted pulse is expressed as

s(t) = m(t) exp(j27rft) (19)

where

s(t) = transmitted signal expressed in complex form (V)

m(t) = complex modulation function (V)

fr = carrier frequency (Hz)

The use of complex signal notation is assumed throughovt the thesis, so a

signal is assumed to be complex unless stated otherwise. The magnitude of m(t)

is the envelope of the real signal. The transmitted signal represented in complex

baseband form is simply expressed as

s(t) = m(t) (20)
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Ignoring changes of amplitude, the signal backscattered from the point target can

be represented as

Sr(t) = m(t- ,rd) exp[j2r(f + fd)t - rd)] + n(t) (21)

where

rd = cR/2

fd = -2v,/A

and where

rd = range-delay time due to the point target range R (s)

fd = Doppler frequency-shift due to the point

target radial velocity (Hz)

c = speed of light (m/s)

A = transmitted signal wavelength (m)

n(t) = white Gaussian noise signal (V)

Conversion of the received signal to complex baseband form yields

sr(t) = m(t - Td) exp (j27rfdt + j) + n(t) (22)

where q = 27r (f, + fd) -rd radians. The task of the receiver is the accurate estimation

of the parameters T'd and fd assuming neither parameter is known apriori. This is

the classical radar problem and references discussing its many applications abound

(38, 30, 39, 26). Radar texts commonly demonstrate the optimality of matched-filter

detection of the backscattered signal from a single point target in white Gaussian

noise (38:369-376). If the target is stationary, a single, linear time-invariant matched-

filter (MF) is adequate to achieve maximum likelihood estimation of target range-

time delay Td. The MF impulse response h(t) which maximizes the peak signal to
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mean noise power ratio, can be expressed in terms of the transmitted signal as

h(t) = s'(-t) (23)

The matched-filter frequency transfer function H(f) is expressed through the Fourier

transform of Equation (23) as

H(f) = S*(f) (24)

First consider the stationary point target case whert. fd = 0, and the only

target parameter to estimate is the range time-delay rd. For this case, Equation (22)

simplifies to

st(t) = m (t - Td) exp (jO) + n(t) (25)

where 0 = 27rferd. One can easily show that the MF response y(r) can be expressed

as

Y(T) = L. s()s*(t - r)dt (26)

The form of Equation (26) shows that the matched filter response is obtained through

a cross-correlation of the received signal with a time shifted replica of the transmitted

signal. Substituting Equation (25) into Equation (26) and neglecting the noise term

n(t) yields

y (r)=exp (j ) s(t-rd)s*(t -r)dt =exp(j0)R(r -rd) (27)

where R(r - rd) represents the time-shifted autocorrelation function of the trans-

mitted signal. The MF response can also be expressed in terms of the complex

modulation envelopes as

y(r) = exp (j) m(t-rd)m*(t-r)d =exp(j)R(r Td) (28)

Where in this case R(r - rd) represents the time-shifted autocorrelation function of
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the complex modulation envelope of the transmitted signal. Since the phase 0 is

unkown, envelope detection is required. If a square-law envelope detector follows the

MF, the matched-filter square-law receiver (MFSLR) output can be expressed as

ly(r)l = = IR(r - rd)12  (29)

where the peak of IR(r - rd)l2 occurs at T = Td. This type of estimation is referred

to as noncoherent estimation since the target phase information is eliminated.

Now consider the non-stationary point target case in which the point target

parameters rd, fd, and 0 are unknown. For this case, the received signal, neglecting

the Gaussian noise term can be expressed as

st(t) = s(t - Td) exp(j27rfdt + jo) (30)

Since both rd and fd are unknown, an array of matched-filters with incremen-

tally spaced center-frequencies as illustrated in Figure 3 is required to extract the

maximum-likelihood estimates of rd and fd. If the filters of the MF array of Figure

3 are spaced with infinitesmally small center-frequency increments, the array MF

response can be expressed as

LO
Y(r, f) = oo s, (t) s* (t - -) exp (-j27rft) dt (31)

The form of Equation (31) shows that the MF response consists of the cross-

correlation of the received signal with a time-shifted, frequency-shifted version of

the transmitted signal (30:69). The received signal of Equation (30) substituted into

Equation (31) yields

y(r, f) = exp (j¢) 10: s (t - 7d) s (t - r) exp [-j27r (f - fd)] dt (32)
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Matched-Filter Square-Law MFSLR
Array Array Response

MF Square-Law

MF Square-Law

Figure 3. Matched-Filter, Square-Law Receiver
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Since envelope detection is typically employed, the phase term is neglected, and the

MF response can be expressed as

y(r, f) = L s (t)S*[t - (T- r)exp[-j27r(f -fd)]dt (33)

With the change of variables

'r= r-Td (34)

f'= f-fd (35)

the MF response of Equation (33) simplifies to

y(', f)= F s (t)s* (t - T)exp (-j2r(f') dt (36)

The variable translations of Equations (34) and (35) shift the MF response from the

target location (rd, fd) in the (r,,f) plane to the origin of the (7-',f') plane.

Equation (36) represents the MF response neglecting the unknown phase term

and the noise term of Equation (25). This function, first introduced to radar theory

by Woodward (41:118-119), is called the signal ambiguity function. For a complex

transmitted signal s(t), the ambiguity function is defined as

x(r, f) =  s(t)s*(t - r) exp(-j27rft)dt (37)

where the prime notation has been dropped. The ambiguity function represents the

MF response with its axes centered at the target location (rd, fd). In terms of the

complex low pass envelope of s(t), the ambiguity function is expressed as

X(r,f) = 1 m(t)m*(t - r)exp(-j27rft)dt (38)
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The ambiguity function can also be expressed in its symmetrical form as

x(T, f) = L m(t + r/2)m*(t - r/2)exp(-j27rft)dt (39)
00

The MFSLR response (as in Figure 3) is the squared-modulus of X(r,f) and is

designated with the symbol 0(r, f) where

0(r, f) = 111 m(t + -r/2)m*(t - r/2)exp(-j2rft)dt 2  (40)

O(r, f) is also commonly referred to as the ambiguity funtion, and the three dimen-

sional plot of the surface of 0(r, f) above the (r, f) plane is called the ambiguity

diagram.

Several mathematical properties of the ambiguity function 0(r, f) can be found

in numerous radar texts (39, 38). These properties are typically given in terms of a

transmitted signal s(t) which is normalized with respect to its energy such that

I_ Is(t)12 dt = 1 (41)

If the transmitted signal is normalized such that Equation (41) is satisfied, some

useful properties of the ambiguity function (39, 38) can be stated in the following

equations:

Ambiguity Volume = J O(r,f)drdf = 1 (42)

Max{O(r,f)} = 0(0,0) = 1 (43)

9(r, 0) = ,] m(t)m*(t - T)dt (44)

0(0,f) = /11m2(t)exp(-j27rft)dt (45)

O(r,f) = O(-r,-f) (46)

Equation (42) is known as the volume invariance property which indicates that the
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volume of a normalized ambiguity function always equals unity. Equation-(43) indi-

cates that the maximum of the normalized ambiguity junction always occurs at the

origin and equals unity. Equations (44) and (45) indicate the form of the ambigu-

ity function across the range-time delay and frequency axes respectively. Equation

(46) is a symmetry relationship. The volume invariance property and the maxi-

mum amplitude property describe the fundamental limitation of radar resolution

performance.

Another useful function in radar theory is the cross ambiguity function (26:286)

defined as

X0(T, f) = si(t)s(t - r)exp(-j2rft)dt (47)

Substituting s,(t) as expressed in Equation (25) for si(t) and substituting the trans-

mitted signal for s2(t), the cross ambiguity function represents the MF response

given as

xn(r, f) = exp(jO)x (,r, f) + xn('r, f) (48)

where

Xn(',) = L n(t)s*(t - r) exp(-j27rft)dt (49)

Equation (48) represents the MF response in terms of the signal component

and Gaussian noise component of the received signal. The cross ambiguity function

represents a statistic for estimating Td and fd. If fd is known, the peak of IX,(r, fd)12

along the r axis determines rd. If rd is known, the peak of Ix,(rdf) along the

f axis determines fd. If neither rd nor fd are known, the peak of Ixo(r,f)12 in the

(r, f) plane determines rd and fd with maximum likelihood (8:8-58-8-59).

3.3 Radar Resolution

Radar resolution is defined in terms of the radar's capability to separate signals

due to point targets which are separated in range or in radial velocity or in both range

and radial velocity. Radar resolution is analyzed based on the-premise that the signal
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can be detected in the receiver noise; otherwise, analysis of resolution capability

is irrelevant. In general, the signal ambiguity function without considering noise

effects is required for determining radar resolution performance (30:1-9). Recall from

Equations (34) and (35) of Section 3.2 that the definition of the ambiguity function

X(r, f) is in terms of the MF response translated to the target coordinates (rd, fd).

Substitution of Equations (34) and (35) into Equation (38) yields the expression for

the MF response in the (r, f) plane which can be expressed as

y(r, f) = exp(jO)x(r - Td, f - fd) (50)

Next, consider the case where numerous point targets are imaged. In a dense

target environment, the radar beam illuminates many closely-spaced point targets.

If a(rd,,, fd.) represents the backscattering cross section of the nth point target and

¢(rd,, fd,) represents the phase of the nth point target, the MF response, neglecting

the Gaussian noise term, becomes a superposition of the MF responses from the

backscattered signals from each point target. The resultant MF output can be

expressed as

N

y(r, f) L "_'/2 (rd.,fd.)exp[ O('rd.,fd.)]x(r(- rd ,f-- f-,) (51)
n=1

where

N = number of particles illuminated

au/2(7'd,, fdn) = reflectivity of the nth point target

¢(rdn, faa) = unknown phase of the nth point target (rads)

In the limit as the number of particles becomes infinite, the target becomes contin-

uous in range and radial velocity, and the MF response is given as

(r, f) =I '2 (Td, fd) exp [(rd, fd)] x(T - 72d, f - fd)drddfd @2)
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The form of Equations (51) and (52) shows that the MF response is expressed in

terms of a coherent superposition of the amplitudes and phases of each point target.

As a result, the MF response as expressed in Equations (51) and (52) is called

coherent imaging (8:7-12-7-13). As Rihaczek explains, in a dense target environment

where the radar illuminates numerous point targets, the differential ranges between

point targets are essentially random. Therefore attempts to determine the exact

coherent superposition of amplitudes and phases to describe the MF response is

unrealistic (30:111-114).

To proceed with the discussion of resolution, a statistical approach is required.

Rihaczek shows that the dense target environment requires a statistical description

of the target backscatter and its corresponding MF response in terms of the mean

target backscatter cross section-U and the mean power response of the MF y. The

mean power response can be obtained with the MFSLR illustrated in Figure 3. If

U(fda ) represents the average cross section of the nth target where Td. and fd.

represent the mean range time-delay and Doppler frequency-shift of the nth target,

Rihaczek shows that the MFSLR response can be expressed as

ly7Nf1 _-E odjn 0(--T. -d) (53)
n=1

Again, in the limit as the point targets become continuous in range and frequency,

Rihaczek expresses the average MFSLR response as

ly(r,f)l'  0 I (d, 7d) 0(7 -Tdf - fd)drddfd (54)

Equation (54) describes a two-dimensional convolution of the average scattering

function with the waveform ambiguity function. Unfortunately, limitations exist

concerning the validity of Equations (53) and (54) in terms of imaging aerosols.

In the Rihaczek derivation of these equations, he states the assumption that the

target consists of a fixed distribution of scatterers in range and radial velocity. In
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other words, the orientation of the particles with respect to the radar does not

change significantly over the time duration of the transmitted pulse. (30:335-338)

This limitation is especially bothersome when imaging aerosols which rapidly change

their orientation. If the pulse duration of the transmitted signal is short enough (i.e.

within the coherence time - . - 10us) such that significant changes of the aerosol

orientations with respect to each other do not occur during the measurement interval,

Equations (53) and (54) are valid approximations of the mean MFSLR response.

Later in Sections 3.4 and 3.5 a similar but more general result for the mean power

MFSLR response is obtained. For now, assuming Equations (53) and (54) are valid,

they can be used to illustrate some useful concepts of resolution.

The form of Equation (54) shows that the average MFSLR response is obtained

through a superposition of 0(7, f) for each point target. Also, Equation (54) pro-

vides a simple analytical description of the mean MFSLR response in a dense target

environment. One can think of the average scattering function (7d,fd) as a two-

dimensional input, the ambiguity function 0(7-, f) as an impulse response of a two-

dimensional linear filter, and the mean MFSLR response F as the two-dimensional

output of the filter. If the ambiguity function could be represented as the two-

dimensional impulse function S(r, f) its substitution into Equation (54) would yield

ly(T, f)1' =7(f) (55)

The two-dimensional delta ambiguity function represents a radar with infinitesimal

resolution in time and frequency or alternatively in range and radial velocity. Based

on this idealized response, a radar meteorologist can infer common parameters of

interest pertaining to the target such as backscatter density, mean velocity, and

velocity spread. These parameters are obtained from the complete knowledge of

Z(7-, f). It is well known that the delta ambiguity function is unrealizable in both

the r" and f axes simultaneously. A realizable radar ambiguity function will have

finite widths A- and Af in range time-delay (RTD) and Doppler frequency-shift
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(DFS). It is clear that target resolution is only as good as the filter resolution with

which it is observed; therefore, the shape of the ambiguity function 0(r, f) and its

distribution over the (r, f) axis is fundamental to determining resolution.

Three commonly referenced resolution criteria are the Woodward, the Rayleigh,

and the half-power criteria. The Woodward resolution criterion (41:118-119) for RTD

resolution width can be expressed as

= f -.% O(r, O)dr (56)
0(0,0)

Equation (56) represents the central width Ar in which the energy of the ambiguity

function is located with respect, to the T axis. Assuming the transmitted waveform

is normalized with respect to its energy and substituting Equation (42) of Section

3.2 into Equation (56) yields

T= f 0 (r, )dr (57)

Substituting Equation (44) of Section 3.2 into Equat:'n (57) yields

A 1 L0 m(t)rn*(t - i-)dt I dr- (58)

If M(f) represents-the Fourier transformation of m(t), Ar of Equation (58) can be

expressed as

AT - IM(f)I4 df (59)

As an example, let the normalized complex envelope of the transmitted signal

spectrum be expressed as

IM(f)l = -- irect(f/B) (60)
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where B is the bandwidth and where the function rect(f/B) is defined as

rect (61)
0 elsewhere

Substituting Equation (60) into Equation (59) yields

AT= rect(f /B) df = 1/B (62)

Therefore, the total resolution width in RTD is inversely proportional to the signal

bandwidth B. As the signal bandwidth increases, the RTD resolution improves

proportionately. Similarly, the Woodward DFS resolution criterion for a normalized

ambiguity function is defined as

Af = LO 0(0, f)df (63)

Substituting Equation (45) from Section 3.2 into Equation (63) and again assuming

the signal energy is normalized, DFS resolution can be written as

I00

Af= Im(t)14 dt (64)

And a similar example for DFS resolution width follows where the transmitted signal

envelope is expressed as

Im(t)l = -- rect(t/T) (65)

where m(t) is a normalized rectangular pulse of time-duration T. The DFS resolution

width is obtained from the following equation:

Af = j I " rect(t/T) dt = lIT (66)
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full width across the T or f axis respectively such that O(r, f) = 1/2. The RTD

resolution width is found by solving for Ar in the following equation:

0 ,0 (71)

Similarly, the DFS resolution width is found by solving for Af in the following

equation:

o (o,~L) =(72)0 (0, =f2

For the simple rectangular pulse, the RTD resolution width and the DFS res-

olution width is usually approximated respectively as

Ar = T _ 1/B (73)

Af = 1/T B (74)

In general, range delay resolution width is inversely proportional to the-signal band-

width and frequency resolution width is inversely proportional to the signal time

duration (30:93-98). One can define a nominal resolution cell with dimensions in

frequency and range-time delay as

ATAf (75)

where TB is referred to in radar literature as the time-bandwidth product of the

transmitted waveform. The RTD resolution expressed in range coordinates is

AR = c x A-/2 (76)

And the conversion of DFS resolution to radial velocity resolution becomes

AV = A x Af/2 (77)
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Substitution of Equations (76) and (77) into Equation (75) yields the nominal reso-

lution cell with dimensions in range and radial velocity expressed as

cA 1
ARAV= 4 ×  (78)

The form of Equation (78) indicates that the area of the nominal resolution cell

is directly proportional to the wavelength transmitted and inversely proportional to

the signal time-bandwidth product. The resolution cell definition expressed in either

Equation (75) or in Equation (78) provides a useful analysis tool when determining

waveform resolution performance; however, the resolution cell definition alone does

not provide a complete description of resolution performance. The resolution mea-

sures Ar and Af are based on independent measurements of range-time delay and

frequency of the central lobe of the ambiguity function. In other &ords, A- is the

resolution width in r for a known DFS fd, and Af is the resolution Nvidth in f for a

known RTD -d. As Rihaczek (30:93-99) and Woodward (41:118-124) explain, when

combining the two resolut:on measurements to form the nominal resolution cell one

may conclude that any waveform with large time-bandwidth product TB > 1 will

result in a smaller resolution-cell. However, due to the amplitude constraint of Equa-

tion (43) of the ambiguity function and the volume constraint of Equation (42) of

the ambiguity function, waveforms of large time-bandwidth products will necessarily

exhibit ambiguities elsewhere in the (r, f) plane which can mask the target response

of the resolution cell centered at the origin of the (r-, f) plane.

Rihaczek introduces the term self-clutter to describe the interference of un-

wanted targets due to waveforms with ambiguity functions which have significant

side-lobes or additional ambiguities in the form of near replicas of the central spike

in the (-, f) plane (30:92) Therefore, radar resolution in a dense target environment

must be determined in terms of the resolution cell definition and the additional ambi-

guities described as self-clutter which can possibly mask the resolution-cell response.
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In this section, it has been shown that the MF response in a dense target en-

vironment is described statistically in terms of the target's mean backscatter cross

section 7( 7 d) and the corresponding mean power MFSLR response. This statis-

tical average approximation of the target backscatter and the MFLSR response is

valid with the condition that the point targets do not change their orientation sig-

nificantly over the pulse duration. Since the mean power MFSLR response as given

in Equation (54) describes a two-dimensional convolution of the scattering function

7(Pd,Id) with the ambiguity function O(r, f), resolution in the average RTD and

average DFS is defined in terms of the central spike widths Ar and Af of 0(r, f).

Three radar resolution criteria which measure Ar and Af of 0(r, f) were given. In

general, target resolution will require knowledge of both the signal ambiguity func-

tion and the statistical characteristics of the target. The next section provides a

more detailed discussion of the statistical characteristics of the aerosol target.

3.4 Target Model

The discsussion of Section 3.3 led to a statistical model of the dense target

environment in terms of the target's mean cross section "(fd,-d). This statistical

model and the corresponding MFSLR response is valid as long as the point target dis-

tribution in 7d and fd which composes the dense target does not change significantly

over the pulse duration. In other words, changes in the point scatterer distribution

in d and fd must be small enough that "(7d,"d) is a meaningful quantity to describe

the target. Since aerosol particles rapidly change their orientation on the scale of

the transmitted lasei wavelength, this model is valid only for short duration pulses

(i.e. _ 1.s). To consider the more general case where the orientation of the aerosols

changes significantly over the pulse duration, a more rigorous statistical model of

the dense aerosol target is required.

As in Section 3.3, the aerosol target model can be described as a randomly dis-

tributed array of point targets which are distributed in range and velocity. Aerosol
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particles of a diameter on the order of the optical signal wavelength transmitted

will backscatter most of the energy received. Although some degree of molecular

backscattering occurs, it is generally assumed to be negligible in comparison to the

aerosol backscattering (18:67). For example, under typical clear-air atmospheric

conditions, most of the energy received from a lidar transmitting at the 10pIm wave-

length will be backscattered from aerosols of diameter 1-3pm (24:450). The number

density of these particles within the spatial extent of the pulse transmitted, depends

on a multitude of factors such as geographic location, altitude, weather conditions,

season, etc., and will typically include several thousand aerosols (25). From a the-

oretical point of view, one can generally assume that the lidar beam will illuminate

an infinite number of point targets with a nominal separation on the order of a

wavelength for 10pm lidar (15).

From Goodman (12:347-356) one finds that when monochromatic light illumi-

nates a rough surface (rough on the scale of the wavelength A) the reflected image

has a granular appearance due to numerous bright and dark spots. This effect is

commonly referred to as laser speckle. The randomly placed aerosol particles within

the volume which the lidar beam illuminates individually radiate incoherent fields of

random phases. At the receiver, the superposition of the fields backscattered from

each of the aerosols within an illumination volume will form the resultant speckle

pattern. The illumination volume of the aerosols is defined by the beam width and

the spatial extent of the transmitted pulse equal to cT/2 where T represents the

time duration of the pulse transmitted. The received signal from a dense target such

as aerosols can be expressed as

00

sr(t)= '/ 2 exp (¢n) m(t - rd,,) exp (j27rfdti) (79)
n=1

where

sr(t) = complex received signal at baseband (V)
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or1/2 = reflectivity of the nth point target

On = unknown phase of the nth point target (rads)

m(t - rd) = complex modulation signal transmitted (V)

rdn = range-time delay of the nth point target (s)

fd, = Doppler frequency shift of the nth point target (Hz)

From Hardesty (14:58-60), the backscattered signal sr(t) as expressed in Equation

(79) represents a superposition of the backscattered signals from each aerosol point

target. The phase On of each aerosol is statistically described by a uniform distribu-

tion with the probability density function

( J if-(O<n)__r (80)

0 otherwise

Therefore, the backscattered signal from each aerosol point target has a random, uni-

formly distributed phase On, and the backscattered signal s,(t) expressed in Equation

(79) represents a superposition of the backscattered signals of random phase from

each point target. As a result, for a given time tj after signal transmission, the

received signal s,.(ti) is described statistically in terms of its amplitude and phase.

The amplitude of the resultant signal ISr(t)l is described statistically as a Rayleigh

random variable (14:58-60) with the probability density function

{ (i!4J)1) or) exp __ r ] I~r(tl)I !0 (81)
Ulrk1)l) = o I (rj)1 < 0

where a 2 is the mean squared value of Is(tj)I. The resultant phase of s,(t1 ) desig-

nated as 0r(41) is described statistically as a uniformly distributed random variable

with the uniform probability density expressed in Equation (80).

As Hardesty and Menzies explain, if a lidar of a single carrier frequency f

illuminates a volume of dense, randomly distributed aerosols which are stationary
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with respect to each other, the resultant backscattered signal s,(t) will consist of a

sinusoidal signal of the carrier frequency fc plus or minus the Doppler frequency-shift

with a constant Rayleigh distributed amplitude and constant uniformly distributed

phase. Under real atmospheric conditions, the turbulence and wind shear within the

scattering volume cause the aerosols to move relative to each other. The relative

aerosol motion within the scattering volume causes the aerosol particles to change

their orientation with respect to the lidar receiver. As a result, the superposition

of the backscattered signals change with time causing the random amplitude and

random phase of sr(t) to also change with time. Therefore, s,(t) is described as

a random process. The changes in random amplitude and random phase of s,(t)

effectively broaden the bandwidth of s,(t) (24:453).

The temporal correlation function of s,(t) expressed as

Rsr(T) = E [S' W)s(t + )] (82)

provides a measure of how rapidly the received signal changes with time. If the

received signal is assumed to represent a stationary random process (this representa-

tion of s(t) is discussed in more detail in the following paragraphs) then the Fourier

transform of Rr(rd) represents the power spectral density (PSD) of s (t). Hard-

esty shows that the shape of the PSD of s,(t) is proportional to the probability

distribution of the radial wind velocities within the scattering volume (14:175-179).

Hardesty and Menzies (24:453) state that the temporal correlation time t, of the

received signal which provides a measure of how rapidly sr(t) varies with time can

be expressed to a rough approximation as

t (83)

where A is the laser wavelength transmitted and a, is the standard deviation of the

distribution of aerosol radial velocities within the scattering volume.
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Chapters 11-13 of Van Trees' text (39:357-536) provide additional insight into

the modeling required to adequately represent the statistical nature of the backscat-

tered signal sr(t) by using an alternate approach to that presented in Equation (79).

Van Trees provides a general, dense target environment model which applies directly

to aerosol imaging. Since the received signal consists of a large number of ran-

domly distributed point target contributions, Van Trees also statistically models the

backscattered signal as a random process with a time-varying, Rayleigh distributed

amplitude and a time-varying, uniformly distributed phase. Van Trees models the

target backscatter as a complex Gaussian random process ")DR which can be ex-

pressed in terms of real and imaginary components as

7DR= /DRR + J'TDRI (84)

where "[DRR and "/mR, are jointly Gaussian random processes with identical covariance

functions. For the dense aerosol target case, the aerosols are assumed to compose a

continuous range-spread, frequency-spread, speckle target with the compicx rcccivcd

signal-expressed as

s,(t) A E -00/L s(t - Td) DR(d, t - rd/2) dd (85)

where

Et = Transmitted energy (J)

s(t) = Complex transmitted signal (V)

Sr(t) = Sample function from a complex Gaussian random process (V)

Td = Range time-delay coordinate with rd = 2R/c (s)

^IDR( rd, t) = Complex Gaussian random process with independent

variables (rd,t) of range and time.

Physically, the mean and covariance of 'YDR(rd, t - Td/2) describe the statistical char-

acteristics of the aerosol target backscatter. Van Trees makes two assumptions about
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the Gaussian random process statistics of 7'DR(Td, t - 2) which are stated as fol-

lows: Assumption 1. The return from each range interval Ard is a sample function

of a stationary, zero-mean complex Gaussian random process. Assumption 2. The

returns from different range intervals Ard are statistically independent. As a result

of Assumption 1, the mean value of YDR(rd, t -rd/2) is equal to zero. And as a result

of Assumption 2, the covariance function of 'DR(rd, t - rd12) designated as Cy(t, u)

can be expressed as

01(t, U) = E)]R(Td, t)YDR(', u)] = KDR(7-d, t - u)8(rd - (86)

where the function KDR(rd, t - U) is dependent upon the reflective properties of the

target and where the delta function 6(rd-T') is a result of the statistical independence

requirement of Assumption 2.

Van Trees introduces the scattering function definition as

SDR{Td, fd} = KDR(Td, a) exp(-j2zrfda)da (87)

where the scattering function SDR{rd, fd} represents the Fourier transform of KDR(Td, a);

therefore, KDR(,rd, a) can be expressed as

KDR(rd, a) = 0 SDR{rd, fd} exp(j27rfda)dfd (88)

SDRf'd, fd} represents the range-dependent PSD of the Gaussian random process

7DR(rd, t). Since 'YDR('Td, t) is a zero-mean, complex Gaussian random process, Sr(t)

as expressed in Equation (85) represents a sample function from a zero-mean complex

Gaussian random process. The signal s,(t) at the receiver is completely characterized

by its complex covariance function expressed as

Csr(t,u) = E[Sr(t)S*(U)] (89)
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Substituting Equation (85) into Equation (89) yields an expression for the complex

covariance function given below:

00
Cr(t, u)-- E j S(t -Td)s$(U - ')E[-DR'rd, t - rd12)DR(rd, t - d2)d d

(90)

Substitution of Equation (88) into Equation (90) yields

Ca,(t,u) = Et L s(t - Td)S*(U - T)gDR(rd, t - u)dTd (91)

Substitution of KDR(rd, a) in terms of the scattering function SDR{Td, fdl given in

Equation (87) yields an alternative expression for 0sr(t, u) expressed as

Csr(t, u) = EI J- j s(t - Td)S (u - -"d)SDR{d, fd)} exp[j27rfd(t - u)]dfddTrd (92)

Recall that sr(t) represents the received signal at the lidar receiver prior to

matched-filter processing. Equations (85) through (92) provide a summary of the

model derivation Van Trees (39:357-536) developed for range-spread, frequency-

spread targets which is useful in developing a scattering model for aerosols. These

equations provide a complete statistical characterization of the aerosol backscat-

tered signal. Also, these-equations provide the foundation necessary for developing

an aerosol target Model and obtaini g the statistical description of the receiver's

MF response. As a specific example of an aerosol scatteing function model for

SDR{f'd, fd}, consider Shapiro's aerosol target model.

Shapiro (33:1-5) has developed an aerosol backscatter model consistent with

the Van Trees dense target development just described in Equations (85) through

(92). From the Shapiro model, the received signal from aerosol backscatter, as in

Equation (85), can be expressed as

S () =Et/ s(t - 'Td)-yR(Td, t - rd2)d7-d (93)
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where

YDR(Td, t) = exp(-j27rldt) L0 T(T, crd/2, t - rd) '(T, crd/2)dp (94)

where

T(7r, t) = random speckle target field reflection coefficient

2(;5, crd/2) = normalized spatial beam pattern of the transmitter and

back propogated local oscillator at range crd/2

= the transverse polar coordinate within the plane

perpendicular to the line of sight of the radar beam

fd = the mean Doppler frequency-shift of the aerosols

Assuming a Gaussian distribution of aerosol relative velocities, and assuming that

the returns from different spatial coefficients 7 and different range coefficients Td are

statistically independent, the covariance of T(-3, rd, t) can be expressed as

E[T(-5,rd,)T*(- ,,u)] = -2 rd-- O [ t-2] 9
'rd 'r- ') - ) exp  (95)

where

fi(crd/2) = aerosol backscatter coefficient at range R = crd/2 (m-Isr-1 )

te = coherence time approximated by Equation (83) (s)

Substituting Equations (94) and (95) into Equation (86) and solving for KDR(a, Td)

yields

KDR( d, a) = -P( c) E(r-  exp [- - 27r7d] (96)

Therefore, the scattering function using Equation (87) can be expressed as

SDR{T~d, fdl = 3 (E) 16 ,,r )I' t exp [... (97)
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Van Trees (39:361) defines the mean Doppler shift fd as

fd'= 0 ofdSDR{d, fd}dfd (98)

where

2o2 = KDR(Td, 0) (99)

The scattering function SDR(Td, fd) describes the aerosol range-spread backscat-

ter characteristics in terms of the aerosol backscatter coefficient fl(crd/2), and the

frequency-spread'backscatter characteristics in terms of a Gaussian distribution func-

tion. Note that the smaller the coherence time, the broader the frequency spread

and therefore the broader the velocity distribution of the particles imaged. Also

note that the Gaussian distribution term of the scattering function is centered on

the mean Doppler frequency-shift 7 d. The mean Doppler frequency-shift will vary

as the pulse propagates through the atmosphere and so will the coherence time as

the pulse enters regions of increasing or decreasing turbulence or wind shear. The

stationarity of the process is limited; therefore, this model is valid over a limited

observation time.

When considering the complete description of all the point targets which the

lidar pulse encounters during its propogation through the atmosphere, the overall

target is seen to consist of a continuous distribution of point target velocities and

ranges. The range can be considered to extend beyond the maximum range of the

lidar, and the frequency will range from zero to plus or minus the highest Doppler

frequency-shift due to wind velocities encountered. For a mean radial wind velocity

range of 0 to ±40m/s the mean Doppler frequency-shift range is from 0 to ±8MHz.

In this section, the signal sr(t) backscattered from a dense array of aerosols

has been modeled as a zero mean, complex Gaussian random process. The aerosol

scattering function SDR{rd, fd} represents the range dependent PSD of the random

process. The Shapiro aerosol model for SDR{rd, fd} represents a specific example of
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aerosol dense target modeling which is consistent with the Van Trees dense target

development. Radar measurements of SDR{Td, f} yield the parameters of inter-

est such as mean backscatter power, mean Doppler frequency-shift, and Doppler

frequency-shift spread. Thus far only the backscattered signal s,(t) at the radar

receiver has been statistically modeled. The next logical step in the development of

matched-filter aerosol sensing is a statistical description of the matched-filter radar

receiver response to the backscattered signal s(t).

3.5 Conventional Radar Receiver

As suggested in Section 3.2, the MF bank receiver response to the signal sr(t)

can be expressed as the cross-correlation with the time-translated, frequency-shifted

version of the transmitted signal. The discussion of resolution in Section 3.3 led

to the Rihaczeck conclusion that the only means of describing the MF response in

a dense target environment of randomly distributed point targets, is through the

average power response of the matched filter. The average power response was

shown to result in a two-dimensional convolution of the average target cross section

in range and Doppler with the signal ambiguity function 0(r, f). In Section 3.4 a

more detailed statistical description of the aerosol target was provided. The text of

Van Trees offered a general model to describe the statistics of the aerosol target, and

a specific aerosol scattering function from Shapiro was compared to the Van Trees

model. For both the Rihaczeck model and the VanTrees model, the mean power

response of the MF represents the measureable quantity available to describe the

aerosol target. Recall the output of the MFSLR as illustrated in Figure 3 can be

expressed analytically as

IY(T, f) 1' 0 Sr(t)s*(t -,r) exp(-j27rft)dt i (100)

where s(t) is now the aerosol backscattered signal of Equation (85). The derivation

to determine the mean of Equation (100) is provided in Appendix A. This derivation
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shows that the mean MFSLR response can be expressed as

[ily(r',f)l 21= No-i. E, J]f SDR{rd,fdO(r - rd,f - fd)dfd drd (101)

where

fd = target Doppler frequency shift coordinate (Hz)

,rd = target range-time delay :oordinate (s)

f = MFSLR frequency coordinate (s)

-r = MFLSR range-time delay coordinate (s)

N = mean Gaussian spectral density (W/Hz)

The mean power response of the MFSLR from Equation (101) represents a two

dimensional convolution of the scattering function SDR{'rd, fd} with the ambiguity

function 9(r, f). Recall from Section 3.3 the comparable result for the dense target,

MFSLR response which Richaczek models as a two dimensional convolution of the

mean target cross section Z(Td,fd) with the ambiguity function (r, f). Thus for

either case, 0(r, f) along with the target model, determine radar resolution. Both

(7fd) and SDR{Td, fd} represent PSDs associated with the backscatter from a

dense array of point targets randomly distributed in range and velocity. For short

time duration pulses (i.e. - 11ts), where 7('d,"d) is valid, the two models should

yield the same analytical results in terms of the MFSLR response.

Analytically modeling the aerosol target backscatter with the scattering func-

tion SDR{Td, fd} provides the advantage of statistically describing the aerosol backscat-

ter independently from the time duration of the transmitted signal. Thus the

derivation of the MFSLR response of Equation (101) with the scattering function

SDR{'rd, fd} represents a more general solution where the time duration of the pulse

can exceed the coherence time of the aerosol target. Radar resolution in terms of

Equation (101) is analogous to the radar resolution discussed in Section 3.3 in terms

of the Richaczek dense target model. Thus one can think of SDR{ITd, fd} as a two

47



dimensional input, 0(r, f) as the impulse response of a two dimensional filter, and

E[jy(7-, f) 2] as the two dimensional filter response. Thus, the resolution with which

the radar measures SDR{rd, fd is dependent upon the volume distributions of both

SDR{'r,,fd} and O(r,f). This volume distribution aspect of radar resolution is dis-

cussed in more detail in Chapter 4. One can compare the range and frequency

resolution of a matched-filter radar receiver to the resolution achieved with current

lidar systems employing Fourier spectral analysis.

As discussed in Section 2.4, current lidar systems employ Fourier spectral pro-

cessing techniques to obtain estimates of a range-resolved power spectral density

called a periodogram. 'f samples of the MFSLR output are taken across the fre-

quency band for a single range time corresponding to t = '-d, an estimate of the

PSD of the aerosol target is formed. The processing described is comparable to the

current spectral processing technique discussed in Section 2.4. This single estimate

at rd is range-resolved according to the resolution width A7- of the ambiguity func-

tion 0(r, f). The iange of particles which significantly contribute to the single PSD

estimate at t = rd for a simple rectangular pulse are contained within a range swath

of width approximately
AR _ _ T (102)

TR~B 2

This description of range width or resolution is comparable to the range weight-

ing function discussed in meteorological radar literature (11:52-56). Iii general, many

pulses will be noncoherently integrated over the time duration for which the Gaus-

sian random process is stationary. Resolution of the PSD estimate is determined in

terms of the ambiguity function's frequency resolution width Af. For the simple

rectangular pulse, Af L: 11T.

Note the distinction made between resolution performance in terms of the

PSD estimate of SDR{Td, fd} and the resolution performance in terms of resolving a

single point target. In general, single aerosol point targets are too dense to resolve
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individually, but if the resolution definition is in terms of resolution with respect to a

single point target, the convolution operation of Equation (101) on the frequency axis

must be performed. However if resolution is defined in terms of the resolution with

which SDR{rd, fd} is measured, the widths Ar and Af of the ambiguity function

will determine waveform resolution performance. An example will illustrate the

distinction.

Suppose as in Section 3.3, that the ambiguity function can be ideally repre-

sented as the impulse function

0(,f) = 6(r,f) (103)

Substituting Equation (103) into Equation (101) yields the expression

E [Iy(r,f)2] = EtSDR{T, f} (104)

The form of Equation (104) provides the exact representation of the scattering

function with infinitesmal resolution. However, if resolution is defined in terms of

a single point target, then resolution in frequency will be in terms of the width in

f of the scattering function SDR{r, f} while resolution in range is determined by

the width of the ambiguity function across the r axis. This statement is true as

long as the MFSLR response is not coupled in frequency and range. If coupling

occurs between target range and Doppler ( for example, linear frequency modulated

(FM) pulses), the degree of frequency spread of the scattering function along with

the ambiguity function will determine resolution for both frequency and range. In

the next chapter, signal waveform resolution performance for various types of radar

signals will be determined in terms of the scattering function SDR{rd, fd}.
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IV. Findings and Observations

4.1 Introduction

As stated previously, the primary purpose of this thesis effort is to compare

the resolution performance of a conventional matched-filter radar receiver for various

signal waveforms in a dense target environment such as aerosols. It is clear from the

derivations of Chapter 3 that resolution in a dense target environment is determined

in terms of both the scattering function and the ambiguity function. In general, the

backscatter function from Dr. Shapiro which was discussed briefly in Section 3.4

is assumed to adequately represent the aerosol scattering function SDR{rd, fd}. In

this model, the target is continous in range extending beyond the far field range of

the lidar with a reflection coefficient determined by the beamwidth and the aerosol

backscatter coefficient /3(crd/2). The relative velocities of the aerosols is modeled

in terms of a Gaussian distribution in frequency whose width is described by the

coherence time t, . The coherence time in terms of relative aerosol velocities is

approximately expressed as in Section 3.3 as t. A/o,,. The mean Doppler frequency

fd of the aerosols will range from zero to the highest expected atmospheric velocities.

Resolution performance in terms of the radar ambiguity function provides a measure

of the resolution of the scattering function which the waveform can achieve.

The development of radar since the early 40's has resulted in a myriad of

signal waveforms and signal processing techniques, and a detailed discussion of each

is well beyond the scope of this paper. Fortunately however, signal waveforms may

be classified in terms of their respective ambiguity function shapes into four distinct

classcs (31:1078-1083).

Class 1 waveforms are single pulses of carrier frequency f: which form an

ambiguity function with its volume concentrated in a central ridge at the origin of

the (r, f) plane with low sidelobes. Class 2 waveforms also have a concentrated
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volt vith low sidelobes; however, the volume is skewed in the (r, f) plane. Single

pulses with linear frequency modulation (FM) referred to as "chirp" pulses represent

Class 2 waveforms, and their ambiguity function is often called the "knife edge"

ambiguity function. Class 3 signals have an ambiguity function commonly referred

to as the "thumbtack" ambiguity function. A large variety of signal waveforms

often referred to as noise or psuedonoise waveforms which require random phase or

frequency coding can be classified as Class 3 waveforms. In addition, single pulse

waveforms with smoothly varying phase modulation such as quadratic FM form an

approximate thumbtack ambiguity function. The distinctive characteristic of Class

3 waveforms is the narrow central spike of negligible ambiguity volume and the

broad pedestal of large B x T dimensions which contains most of the volume of the

ambiguity function. Class 4 signals have an ambiguity function commonly referred

to as the "bed of nails". Periodic pulse trains uniformly spaced in time represent

Class 4 waveforms. Table 1 provides a summary of the more salient features of

each class of waveform. The four classes of waveforms designated as Classes 1, 2,

3, and 4 are discussed in Sections 4.2 through 4.5 respectively. With these four

classifications of signal waveforms in terms of their respective ambiguity function

volume distributions, the task at hand is to analyze each class of waveform with

respect to its resolution performance in the aerosol, dense target environment.

Table 1. Ambiguity Function Parameters (31:1080)
Radar Signals Class 1 Class 2 Class 3 Class 4
Ambiguity function ridge sheared ridge thumbtack bed of nails
Reolution cell size unity unity 1/TB 1/TB
Ambiguities no (7d, fd) coupling no spikes
Sidelobes low low high low
TB product unity TB > 1 TB > 1 TB >
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4.2 Class 1 Radar Signals

The single radar pulse of carrier frequency f, represents Class 1 radar wave-

forms. The normalized rectangular pulse is expressed in complex baseband form

as

st(t) = -- rect - (105)

where T represents the time duration of the pulse. The ambiguity function of the

rectangular pulse is derived from the ambiguity function definition of Section 3.2,

Equation (26) and is expressed as

f (1 - 1[)sinc[(1-4l)Tf] iflrl-T 10

x(rf)- T 0 if Ir > T (106)

where the function sinc(x) = (sinrx)/(7rx). If the function tri(r) is defined as

/ 1 - lI) if 17r1 _< T 17

tri(r)= T (107)
1 0 if Jrj > T

then the ambiguity function of Equation (106) can be simplified to

X(r, f) = tri(r)sinc [(Tf)tri(r)] (108)

Therefore, the squared-modulus ambiguity function O(r, f) is expressed as

O(r,f) = tri2(r)sinc 2 [(Tf)tri(r)] (109)

The common, two-dimensional contour plot of the ambiguity function 0(r, f)

is shown in Figures 4 and 5 for long and short time duration pulses respectively.

The elliptical regions enclose the areas where the height of O(r, f) is significant

while lightly shaded regions depict the areas where the height of O(r, f) is small

but nonzero. The ellipses of Figures 4 and 5 represent the approximate borders

52



of the half-power, equal height contours of 0(r, f). The ellipse which composes

the half-power border consists of all the points of (7-, f) which satisfy the equation

0(r, f) = 1/2. This convention for two-dimensional contour plots introduced by

Siebert (35:217) simplifies the analysis of various waveforms and is common to many

radar texts (38, 26, 39). For the rectangular pulse ambiguity function of Equation

(109), the shape of O(r, f) along the T and f axes are expressed respectively as

0(r, 0) = tri2 (r) (110)

O(0,f) = sinc2(Tf) (111)

As shown in Section 3.3, the range time-delay (RTD) and Doppler frequency-

shift (DFS) resolution widths for the rectangular pulse are respectively given as

Ar T (112)

1 (113)

Combining Equations (112) and (113) forms the nominal resolution cell expressed as

ATAf = 1. (114)

Similar results apply for the Gaussian pulse case. The normalized Gaussian

pulse expressed in complex baseband form is

/ exp ((115)
= exp 2T 2

where T ;s the root-mean-square (RMS) time duration fo the signal. Derivation of

theGaussian signal ambiguity function yields

x(r, f) =exp [- - + 7r2r2 f2)] (116)
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Figure 4. Contour Plot of a Class 1 Ambiguity Function (Long Pulse) (35:217)
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Figure 5. Contour Plot of a Class 1 Ambiguity Function (Short Pulse) (35:217)
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Therefore, the squared-modulus ambiguity function O(r, f) can be expressed as

O(r,f) = exp [- T - + 27r2T 2f 2)] (117)

As in the rectangular pulse case, the equal height contours of O(r, f) form ellipses,

and the half-power ellipse of the Gaussian pulse is comparable to the h4 if-power

ellipses of Figures 4 and 5. The shape of 0(r, f) along the r and f axes provides a

measure of RTD and DFS resolution. For the Gaussian pulse, the shape of 0(r, f)

along both axes is Gaussian.

Due to the Fourier transform relationship between the time and frequency

domains, to a close approximation, the bandwidth B of any Class 1 waveform is

equal to the reciprocal of the time duration T. Therefore, Class 1 waveforms always

have nominal resolution cells which have the approximate dimensions of B x T with

an approximate area of unity. Figures 4 and 5 illustrate the basic concept. Figure

4 represents the ambiguity function for a long time duration pulse, and Figure 5

illustrates the ambiguity function of a short time duration pulse. As these two

figures illustrate, an increase in time duration T results in a decrease in the size

of the frequency resolution dimension Af. If the time duration T is increased to

infinity, the signal becomes a continuous wave signal with infinitesimal frequency

resolution and with no range resolution. Conversely, if the pulse is infinitesimally

small in time duration, the impulse will provide infinitesimal range resolution with

no frequency resolution.

The coordinate transformations to the resolution widths in range and radial

velocity are respectively expressed as

ct- R (118)

2AV

A = 2A. (119)
A
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Substitution of Equations (118) and (119) into Equation (114) will yield the nominal

range-velocity resolution cell given as

ARAVr = CA (120)
4

For c = 3 X 108 and A = 10pm, ARAV = 750m 2/s. As Equation (120) illustrates,

the only means of reducing the nominal range-velocity resolution cell of a Class 1

waveform is to reduce the carrier wavelength. For the simple Class 1 radar signal,

the resolution cell defined by Equation (120) provides an accurate and complete de-

scription of the resolution with which the radar measures the aerosol scattering func-

tion SDR{rd, fd}. In other words, the mean MFSLR response measures the aerosol

scattering function with the resolution in range and radial velocity of the nominal

resolution cell regardless of the distribution of SDR{rd, fd}. The radar resolution of

the other three classes of radar signal depend on the volume distributions of both

SDR{Td, fd} and 0(r, f) over the (r, f) plane. The remaining three classes of radar

signals to consider are called pulse compression signals. These large time-bandwidth

product signals may improve resolution dependent upon the target scattering func-

tion characteristics. Recall from Section 3.2 that the total volume of 0(r, f) remains

fixed. Pulse compression radar signals simply redistribute the fixed ambiguity vol-

ume. The first class of pulse compression signals designated as Class 2 radar signals

achieve large time-bandwidth products through frequency modulation.

4.3 Class 2 Radar Signals

Single pulses with linear frequency modulation (FM) represent Class 2 signals.

This radar signal is commonly referred to in the radar literature as a chirp pulse, and

radars which implement them are often called chirp pulse compression radars. The

technique of chirp pulse compression has been used extensively since its development

in the 40's, and the literature describing its features abounds (38, 26, 39, 30). As

Skolnik explains (38:420-423), chirp pulse compression provides the radar designer
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the means of using a long time duration pulse to achieve large radiated energy while

still achieving the range resolution of a short duration pulse. In addition, means of

acquiring accurate range and velocity information from multiple pulses have been

developed.

A linear FM chirp pulse can be generated by either active or passive generation

techniques. The active generation technique requires direct time-domain frequency

modulation of the radar transmitter. For a rectangular pulse of constant amplitude

A and time duration T as illustrated in Figure 6a, the frequency modulation is linear

over the time duration T of the pulse as illustrated in Figure 6b. The slope Ikl of

t.he linear FM can be expressed as

Ikl = BIT (121)

where the bandwidth B from Figure 6b is given as B = f2 - fl and where T is the

time duration of the pulse. The slope k in general can be positive or negative.

The passive generation technique requires an impulse function or short time

duration pulse as the input to a dispersive phase filter. The frequency transfer

function H(f) of the dispersive phase filter can be expressed in general as

H(f) = IH(f)Iexp lU(f)] (122)

where the magnitude of the transfer function IH(f)I is constant and the phase of the

transfer function 0(f) is a quadratic function of f. In general, the impulse response

of a dispersive filter with a quadratic phase function produces an output signal whose

time domain phase is also quadratic and thus whose frequency varies linearly with

time. The response of the dispersive phase filter to a short time duration signal

with large bandwidth B is a long time duration signal with the bandwidth B of the

short pulse. The quadratic phase of the time domain signal output from the filter

is equivalent to linear frequency modulation as in the active generation technique
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discussed previously. Either the active or the passive genera'ion technique forms an

approximately equivalent linear FM signal (30, 38). For the purpose of comparing

the resolution performance, either generation technique will yield equivalent results.

Consider the active generation case. The transmitted chirp pulse can be written

in general, complex baseband form as

s(t) = js(t)jexp(j7rkt 3) (123)

where the magnitude Is(t)I is a constant A as shown in Figure 6a, and the phase is

quadratic which is equivalent to the linear FM slope of Figure 6b with k = BIT.

The instantaneous frequency of s(t) is f(t) = kH.

For the analysis to follow, a detailed description of the spectrum of the signal

s(t) of Equation (123) is unnecessary. The Fourier transform of the general chirp

pulse of Equation (123) can be written in general form as

S(f) = IS(f)lexp [j(f)] (124)

where 0(f) is a quadratic function of frequency and the shape of IS(f)I is a function

of both the envelope of the transmitted signal and the bandwidth B representing the

degree of linear frequency modulation (30, 3). If the time-bandwidth product TB

of the transmitted signal is large (TB >> 1), it can be shown that the bandwidth

of the spectrum envelope is approximately the linear FM modulation bandwidth B

where B = f2 - fi as shown in Figure 6b (38:423). Often B is called the -hirp

bandwidth. Thus the transmitted chirp pulse has an envelope of time duration T

and an increased bandwidth of approximately B.

To compress the pulse in the time domain, a matched filter is employed. The

frequency transfer function can be expressed in general as

H(f) = S*(f) = IS(f)Iexp[-j9(f)] (125)
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Figure 6. Amplitude (a) and Frequency (b) of the Transmitted Chirp Pulse (38:423)
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where the transfer function H(f) is the complex conjugate of the transmitted signal

spectrum written in general form in Equation (124). Thus the matched-filter is

represented as a dispersive phase filter with the quadratic phase characteristic -0(f).

As a result, the filter removes the, onlinear phase O(f) of the received signal and

compresses the received signal into a short duration pulse. The degree of compression

of the MF response is proportional to the bandwidth B. Although a large time-

bandwidth signal is transmitted, the MF response compresses the time duration to

form a pulse of duration 1/B with a bandwidth of B; thus, the MF response produces

a signal with a time-bandwidth product of unity (TB " 1) (30:55). Derivation of the

chirp pulse ambiguity function will provide a more precise description of the chirp

pulse MF response.

Consider the active generation of a rectangular-envelope, chirp pulse. The

transmitted signal can be written in normalized, complex baseband form as

s(t) = 1 rect t exp (jrkt2) (126)

Similarly, the Gaussian-envelope transmitted signal can be written in normalized

complex baseband form as

S(t) = 114exp[(~ + iirk) P (127)

where T is the RMS signal time duration. The rectangular and Gaussian enve-

lope pulses represent the two most common pulses shapes considered in radar texts.

The Gaussian chirp pulse yields a slightly broader MF response without significant

sidelobes as compared to the rectangular chirp pulse. For both these pulses, the

linear FM ambiguity functions are similar in form and interpretation, so only the

rectangular pulse ambiguity function is analyzed in detail.
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One of the properties of the ambiguity function (39:290) can be stated as

follows: If

s(t) -+ X(r, f (128)

where the symbol "" means "has the ambiguity function", then

s(t) exp (j~rkt') " x(T, f - kr) (129)

Therefore, the ambiguity functicn of the chirp pulse is simply the ambiguity function

of the unmodulated pulse of the same time duration with its major axis rotated to

the slope of f = k-r as illustrated with a two-dimensional contour plot of O(r, f) in

Figure 7. Substituting the expression for the ambiguity function of the unmodulated

rectangular pulse in Equation (108) into Equation (129), the chirp pulse ambiguity

function can be written as

X(T, f) = tri(T)sinc [T(f - kr)tri(r)] (130)

where again Iki = BIT. From the definition of the sinc function, Equation (130) can

be expressed as

x(rf) = sin [7rT(f - kr)tri(T)] (131)
7rT(f - kr)

For large time-bandwidth product signals (TB > 1), the tri(r) term in the nu-

merator of Equation (131) represents a slowly varying distortion term which can be

ignored (30:171). Therefore, the approximate envelope of the ambiguity function is

expressed as

x(r, f) sinc [7rT (f - kr)] (132)

Thus the squared-modulus ambiguity function O(r, f) is given in approximate form

as

0(r, f) _ sinc2 [7rT(f - kr)] (133)
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Equations (132) and (133) illustrate the symmetry of the ambiguity function in r

and in f. A vertical slice parallel to either axis yields a sinc function MF response.

This symmetry indicates the coupling effect between target range and velocity for

chirp pulse compression radar. Recall from Section 3.2 that the ambiguity function

represents the response of an array of MFs shifted in frequency. An alternative view

of the ambiguity function is also possible. The ambiguity function also represents

the response of a single MF as the Doppler frequency of the received signal is varied

(38:411-412). Due to the symmetry of Equations (132) and (133), the MF response

for a Doppler mismatch fd is equivalent to the MF response translated by Ar, = fd k

for f6 = 0. As a result, a MF receiver for the linear FM chirp pulse employs

a single MF. This technique is possible since Doppler frequency shifts within the

broad bandwidth B of the filter simply produce an additional time lead or time lag

(Ard = fd/k) on the r axis dependent upon the slope of k employed with limited

amplitude attenuation or distortion (30:248).

For the single MF case, letting f = 0 in Equation (133) yields the MF response

on the r axis expressed as

0(r, 0) = sinc2 (rTkr) (134)

Substituting k = BIT into Equation (134) yields

0(r, 0) = sinc (7rBT) (135)

Therefore as discussed previously, the single MF response of Equation (135) com-

presses the received :gnal to a time duration of 1/B with the broad bandwidth B.

As a result, the large -ke-bandwidth product of the received signal is compressed

in time to a MF output signal with TB _ 1.

In summary, the MF receiver for linear FM chirp pulses consists of a linea,

FM frequency characteristic which is opposite to the frequency characteristic of the

transmitted chirp pulse. The receiver compresses the received signal from a time
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duration T to a time duration 1/B with a bandwidth of B. The MF output is a

compressed signal with TB - 1. The chirp pulse receiver can employ a single MF

since a Doppler frequency shift 3f the received signal within the bandwidth B of

the filter produces an additional time lead or time lag in the MF response given as

Ard = fd/k which is dependent upon the slope of k of the transmitted signal with

limited attenuation or distortion.

The time-frequency coupling of the linear FM signal allows a considerable

simplification of the radar receiver since only one MF is required. However, since

both the target's range and the target's radial velocity cause delays in the MF

response, the receiver's simplicity also results in a limitation of the receiver's ability

to determine both target range and radial velocity simultaneously from one pulse.

In fact, this receiver achieves no resolution in Doppler frequency shift within the

bandwidth B.

Before resolution properties of the linear FM signal are discussed, first consider

the simple case where the radar images a single point target of unknown RTD rd

and unknown DFS fd. As a result of the target DFS fd, the output peak rp of the

MF response occurs at

Tp = Td + Ard (136)

where Ard = fd/k. Thus, for a moving target, the peak of the MF response does

not represent the true target range rd. The symmetry of Equations (132) and (133)

shows that all point targets with combinations of rd and fd which lie along the ridge

of the ambiguity function satisfy the following equation:

fd - k'rd = 0 (137)

All combinations of (rd, fd) which satisfy Equation (137) will produce a peak at the

same location rp. Therefore, the range measurement rp is ambiguous over the time

duration T of the chirp pulse. Klauder (21:804) and Rihaczek (30:246-248) show that
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there is a technique called "range extrapolation" which resolves the range ambiguity

inherent to a chirp pulse compression receiver imaging a single point target. As

Rihaczek explains, if the point target DFS fd is converted to the radial velocity

coordinate V, the range error due to Ard can be expressed as

AR = (Am) = (fd\ (C) = (2Vr) C = fc (138)

Since the target is moving with the radial velocity V, the target travels a distance

of AR in At = AR/V seconds. Therefore, the range error AR of Equation (138)

results in a travel time At expressed as

At~k (139)k

Rihaczek states that as a result of Equation (139) the range indicated by the delay

of the MF response peak corresponds to the range not at the time of signal impact

but rather the range at time At later or earlier depending on the direction of the

linear frequency sweep k. Therefore, the linear FM receiver provides a measure of

extrapolated range Re. The extrapolated range Re for a positive slope k is measured

At after signal impact and Re for a negative slope k is measured At before signal

impact (30:247-248). The measurement of extrapolated range R, provides the means

of accurately determining target range; otherwise, unambiguous range measurements

with a chirp pulse compression receiver is limited to stationary targets.

The chirp pulse compression receiver can accurately extrapolate the range

through the simple time translation At = f/k which is a constant of the radar even

though the target DFS fd is unknown. However, the receiver provides no means of

accurately extrapolating the target velocity from a single pulse. When both target

RTD and DFS are unknown, the chirp pulse compression receiver cannot simultane-

ously determine both the target paramters rd and fd from a single pulse. The target

DFS fd can be determined only from consecutive extrapolated range measurements
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(30:249). Converting to range and radial velocity coordinates and assuming the tar-

get velocity does not significantly change between consecutive range measurements,

the extrapolated target velocity can be expressed as

Vrc= RI - R, 2  (140)TP

where R,, and R,2 represent the consective extrapolated range measurements from

two independently processed chirp pulses seperated in time by Tp. At this point,

the relevant issues of measuring the range and radial velocity of a single point target

with a chirp pulse compression receiver have been discussed. This discussion provides

an introduction to the topic of chirp pulse radar resolution which is the next topic

presented.

For the case where numerous point targets are simultaneously imaged rather

than a single point target, the resolution capability of the chirp pulse radar becomes

the primary concern. Since the chirp pulse radar measures only extrapolated range

with no capability of measuring radial velocity from a single pulse, point targets with

the same extrapolated range cannot be resolved (30:251-252). The discussion with

respect to Equations (136) and (137) showed that all point targets with combinations

(-rd, fd) which satisfy Equation (137) and thus lie along the central ridge of the chirp

pulse ambiguity function will produce a MF peak at the same location rp on the r

axis. As a result, when multiple point targets have the RTD and DFS combinations

which satisfy Equation (137), all the point target responses of the MF output sum

together at - = 7-p to form a single peak MF response at rp which is inseperable.

Therefore, in a dense target environment where the point targets are spread in both

range and radial velocity, the degree of range resolution which the chirp pulse radar

can achieve is a function of both the width of the MF response which is approximately

1/B from Equation (135) and the width of the range and velocity "spread" of point

targets which cause them to lie along the central ridge of the chirp pulse ambiguity

function.
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Consider a scenario where good range resolution is the primary requirement of

the radar. Since range resolution performance of the chirp pulse radar is dependernt

upon the distribution in range and radial velocity of the point targets which compose

the dense target environment, one can consider three cases of dense target. In each

case the dense target is classified in terms of the velocity behavior of the point

targets. For the first case, the point targets are stationary. For the second case, all

the point targets move with the same radial velocity V. And finally for the third

case, the point targets move with a mean radial velocity Vr and move relative to

each other. Each dense target case is discussed in the following paragraphs.

The first case is the easiest to analyze. Since all the point targets are stationary,

no range-Doppler coupling occurs. For this case the scattering function SDR{rd, fd)}

can be expressed as

SD R{r d, fd = SDR rd}S(fd) (141)

Since only a single matched filter is employed for linear FM, the frequency variable

f can be set to zero. Thus, the mean MFLSR response from Section 3.5 can be

written as

E I~,)2  
0 +.tL SDR{d, fd}O0(Tr - Td, -fd) dfddrd (142)

Substituting Equation (141) into Equation (142) yields

E [ly (r,-O)l2] = N, + Et 0_SDR {Td) 0 (r - r-d, 0) drd (143)

The form of Equation (143) shows that no coupling exists between the target range

and Doppler frequency. Therefore, the dense stationary target is simply a range-

spread target where the width of O(r - rd, 0) across the r axis represents the width

of the MF response in RTD AT. The RTD resolution width Ar which the chirp

pulse MFSLR can achieve is approximately 1/B, and the range resolution width AR
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is expressed as

AR c (144)

Thus, the width of 0(r - rd, 0) across the r axis determines the range resolution of

the chirp pulse radar.

Next, consider the second case where all the point targets move at the radial

velocity V and are stationary with respect to each other. The scattering function

SDR{rd, fd} can be expressed as

SDR{rd,fd1 = SDR{rd16(fd - fdr) (145)

where fd, is the DFS of the point targets due to the radial velocity V. Substitution of

Equation (145) into the expression for the mean MFSLR response given in Equation

(142) yields

-E [IY(T)f)I] = No + EtL SDR{Td, fd}O(T - -d,-fd)dTd (146)

As in the first case, the form of Equation (146) shows that no coupling exists between

the target range and Doppler frequency. If range extrapolation is employed, the

width of 9(r, f) across the r axis determines the range resolution width AT. As in

Case 1, the RTD resolution width Ar is approximately 1/B, and the range resolution

AR is expressed as

AR=~(17

In terms of velocity measurement, the method of velocity extrapolation as given in

Equation (140) will not work here because the range is continuous, so the radar has

no means of resolving with respect to velocity. Thus, the receiver provides no means

of extrapolating the radial velocity V,. because the target is continuous in range.

And finally consider the third case where the point targets move with a mean

velocity 'Tr, and point target relative motion is nonzero. For the third case, range-
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Doppler coupling in V occurs. This third case represents the aerosol target en-

vironment which is consistent with the Shapiro aerosol scattering model given in

Section 3.4. Due to the range-Doppler coupling associated with chirp signals and

illustrated by the chirp ambiguity function of Figure 7, the degree of point target

relative motion will determine the degree of range resoluton which the chirp radar

can achieve. A specific example in terms of Dr Shapiro's aerosol target model will

provide a more quantitative description of the range resolution Ar which the chirp

radar can achieve.

Dr. Shapiro has demonstrated the range resolution potential of a chirp pulse

radar for aerosol imaging (33:1-5). Recall from Section 3.4 the Shapiro model of the

aerosol target and from Section 3.5 the mean power MFSLR response. The mean

power MFSLR response was expressed in general as

_E [ly (7_, f) 12] = E [Lf'0 r(t)s*(t - T) exp (-j27rft) dt12] (148)

where r(t) = .(t) + n(t) and .s(t) was expressed as

Sr(t) f 002 s(t - rd)yDR(d, t - Td/2)drd (149)

and -7DR(rd, t) which represents the Shapiro aerosol model was expressed as

'IDR(-d, t) = exp(-j2-r7dt) L T (-5,, cTd/2, t - Td/2) 2 (i, c'rd/2) d' (150)

To simplify the analysis, Dr Shapiro assumes that the mean Doppler frequency-

shift (DFS) fd is equal to zero. Since the range can be extrapolated in the more

general case where the mean DFS is nonzero, the simplification of setting the mean

DFS to zero is not especially limiting. With this simplification, a single matched

filter with f = 0 is employed. Thus the mean power MFSLR response of Equation
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(148) simplifies to

_F [iy (,0) 121 = E 00j r(t)s*(t - r)dt 1](1)

Substituting Equation (149) and Equation (150) into Equation (151) yields an an-

alytical expression for the mean power MFLSR response. The detailed calculations

to determine the analytical expression of the mean power MFSLR response to an

aerosol target are laborious and unnecessary for the present discussion of range res-

olution. Dr Shapiro's results are given without proof; however, Dr Shapiro's results

were verified using the general model for the mean power MFSLR response with

f = 0. Therefore, the mean MFSLR response of Equation (142) can be expressed as

E [Iy(-,0) 2] = No + Et L SDR{'rd, fd} (0 -rd,--fd)dfddrd (152)

Recall that SDR {Td, fd} represents the PSD of the complex Gaussian random process

'DR( 'd, t) of Equation (150) where 7d = 0. Also recall from Section 3.4 the Shapiro

aerosol model where SDR {Td, fd} is expressed as

SD{df}=A 2  /'c7d\ , d\ t.,ex (2t2f2) -(153)7r Td, = 712 2

Substituting Equation (153) into Equation (152) yields a general result for the mean

power MFSLR response in terms of the Shapiro aerosol target model and the ambi-

guity function of the transmitted radar signal. Again, the detailed calculations are

unnecessary. Either hiuation (152) or Equation (151) yield the same expression for

the mean MFSLR resp,.- J he aerosol target model. The results are stated as

follows:
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Dr Shapiro showed that transmission of a Gaussian chirp pulse expressed in

complex baseband form as

S(t) = ( )"4 exp[( + j7rk) t2] (154)

will result in a mean power MFSLR response expressed in general form as

E [Iy(,, 0)121 = f Q(,rd)W(,r - ,d)drd (155)

where Q(rd) is the infinite resolution, average aerosol backscatter profile, and where

W(r - rd) is a Gaussian range wieghting function which determines the range reso-

lution of the chirp pulse radar. W(r - Td) can be expressed in general form as

W(-r -r) = K exp [8(7- -rd) 2  (156)

where K is a system constant, and AT is the full width in the r coordinate between

the e- 2 attenuation points of W(r - rd). Shapiro shows that Ar can be expressed

as

A~r 212T(157)[1 + (7rBT/4)2 / (1 + T2/4t2)] 1/ 2

where T is the RMS time duration and B is the RMS bandwidth of the transmitted

signal s(t). Therefore, Ar represents the RTD resolution of the chirp pulse radar.

Multiplying Equation (157) by c/2 yields an analogous expression for the range

resoluton AR given as

AR = cT/2'12

[1 + (7rBT/4)2 1(1 + T2/4j)] (/ 2

For more details of the derivation, refer to Dr Shapiro's report (33:1-5).

The primary interest in terms of range resolution of chirp pulse radar is the

nature of the range resolution AR of Equation (158). Recall that the coherence
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time t, is a measure of the relative velocities of the aerosol particles. Therefore,

as stated earlier, the degree of range resolution AR which the chirp pulse radar

achieves is a function of the distribution of aerosol radial velocities the lidar beam

illuminates. When the point targets such as aersols move relative to each other,

the scattering function is broadened in frequency. As a result, the range resolution

AR is broadened to the extent of significant overlap of the chirp pulse ambiguity

function 0(T, f) and the scattering function SDR {rd, fd} as illustrated in Figure 8.

The schematic of Figure 8 is consistent with the results of Equations (158). Both

show that AR is a function of the volume distributions of 0(r, f) and SDR {Td,fd}.

f

f =kr

%%. ' 4.' 4. -,

SDR {fd, fd}

e-2 width

B

Ar -w

Figure 8. Combined Contour Plots of the Scattering and Ambiguity Functions

As an example, let T = 5pts, t = lps, and B = 1OMHz. Substitution into

Equation (158) will yield AR = 72.6m. If the coherence time were extremely large

which indicates minimal relative motion of aerosols, AR =,' 27m. Also in comparison
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to an unmodulated pulse of the same time duration, AR c-" cT/2 = 750m. It is clear

from this example that with the assumption of a fixed mean velocity of aerosols, the

relative velocity distribution of the aerosols somewhat degrades the pulse compres-

sion of the matched-filter but still improves range resolution performance compared

to an unmodulated pulse of the same time duration. To achieve the same range res-

olution with the unmodulated pulse, the pulse duration T required is approximately

equal to 0.5 microseconds. Due to transmitter peak power limitations, a 5 Ps pulse

may reduce the maximum range of lidar operation . As in the second dense target

case, no means of extrapolating the mean velocity is available since the target is

continuous in range.

In summary, three cases of dense target have been considered, and for each

case, a single linear FM matched-filter was employed. For Cases 1 and 2 where the

point targets were assumed stationary with respect to each other, the width of O(r, 0)

across the r axis determined the range resolution AR of the chirp pulse radar. For

Case 3, assuming f7d = 0 to simplify the analysis, relative motion of the point targets

was included. As a result, the range resolution width AR became a function of the

volume distributions of both the scattering function SDR {rd, fd} and the chirp pulse

ambiguity function (r, f). For Cases 2 and 3 in general, the chirp pulse MFSLR

could not extrapolate the mean velocity because the aerosol target was continuous

in range.

To cover the topic of chirp pulse compression radar as thoroughly as possible,

an additional approach for extrapolating target range and velocity of chirp pulses is

presented. This second approach of chirp radar processing --ported by Ramp and

Wingrove (29:75-82) requires the transmission of two pulses of alternate linear FM

slopcs and corresponding matched-filters. Each signal is processed independently

and combined to provide an interpretation of point target range and velocity. The

basic signal processing for a single point target can be explained as follows: The

transmission of a chirp pulse with positive slope k will result in a compressed pulse
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MF response which peaks at

T'(+) = rd - ATd (159)

where ATd = fdl I. Similarly, for a chirp pulse of negative slope k, the MF response

peaks at

'r(-) rd + Ard (160)

Therefore, the true target range-time delay Td can be found by adding Equations

(159) and (160) to obtain

rd = r(+) (_) (161)
2

Also, subtracting Equation (159) from Equation (160) and substituting Ard = fdl Iki

yields the expression for the DFS fd given as

fd ( () 2 (162)

Thus Equation (161) measures the target RTD and Equation (162) measures

the target DFS. This type of signal processing described by Ramp and Wingrove has

been demonstrated with a C0 2 laser radar (16:152-162). While this type of receiver

signal processing accurately determines the range and the velocity of a single point

target without having to rely upon range extrapolation, this processing technique

can determine neither range nor radial velocity of point targets in a dense target

environment such as aerosols. As Rihaczek explains, with multiple point targets it

will generally be impossible to order the received returns into their respective pairs

to determine their combined range and radial velocity (30:251).

It has been shown that pulse compression radar will provide improved range

resolution performance in terms of an aerosol target as a function of the degree of

relative velocity of the aerosols at the expense of obtaining no velocity informa-

tion. If the radar designer desires both range and velocity information of a target

which consists of point targets distributed in range and velocity, the chirp pulse
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does not offer a viable alternative to the simple -inmodulated pulses designate-.'

Class 1 radar signals. The remaining two classes ,,' pulse compression radar signals

to consider require less detailed analysis. The next case to consider is the large

time-bandwidth product, pulse compression waveform which forms the thumbtack

ambiguity function.

4.4 Class 3 Radar Signals

A variety of signal waveforms often referred to as noise or pseudonoise wave-

forms with an ambiguity function shape which approximates f't2 ambiguity diagram

of Figure 9 are designated as Class 3 radar signals (38:418). This idealized ambiguity

function is commonly referred to as the thumbtack ambiguity function in obvious

reference to its shape. The approximate thumbtack ambiguity function of Figure 9

consists of a narrow central spike containing a negligibly small portion of the am-

biguity volume. The nominal resolution cell is defined in terms of the central spike

disjoint from the base of the ambiguity function and is expressed as

ATAf -(163)

where T is the RMS tire duration of the transmitted signal, and B is the RMS

bandwidth of the traismitted -signal. The volume of unity distributed across the

area of dimensions T x B with an approximate height of 1/TB is called the pedestal

of the ambiguity funtion. Large time-bandwidth product TB > 1 waveforms which

consist of iong time-duration, large bandwidth signals generate the thun,btzck am-

biguity function. An infinite variety of signals referred to as noise waveforms such as

signals obtained through random phase or frequency coding generate approximate

thumbtack ambiguity functions. Another signal waveform which provides a poorer

approximation to the thumbtack ambiguity function is waveforms with smoothly

varying frequency modulation such as quadratic FM (31:1 T) ' ,.'17,) More precise,

three-dimensional ambiguity diagrams for various Cla-s 3 waveforms n., be found
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in the radar literature (30).

As Rihaczek (30:133-140) and Siebert (35:219-220) explain, the narrowness of

the central spike of the thumbtack ambiguity function provides excellent range and

velocity resolution for the sii.gle target as long as the signal can be detected above

the self clutter power interference. The self-clutter is obtained from contributions

due to the point targets within the broad pedestal of dimensions T x B. If the cross

section of the target within the central spike of the ambiguity function is significantly

stronger than the cumulative cross section of all the point targets within the pedestal

of the ambiguity function, then the Class 3 waveform will provide improved-resolution'

periormance. To quantify this concept, radar texts usually introduce the term S/C

for signal to clutter ratio.

Recall from Section 3.5 that the mean power MFSLR response is a two-

dimensional convolution of 'he scattering function SDR {rd, fd} with the ambiguity

function 0(,r, f) which in this case is the thumbtack ambiguity function. The bound-
aries where SDR {frd,fd} is significant (i.e. e-2 attenuation width) in the (r, f) plane

defines the occupied target space. Since the scattering function is continuous in

range, the range extent of the scattering function always extends beyond the dimen-

sion T of the pedestal across the r axis. If fb is designated as the boundary where

SDR {rd, fd} is significant across the f axis, then either fb < B or fb > B where B is

the dimension of the pedestal across the f axis. The analysis of the two cases where

either fb > B or fb < B are briefly summarized from the Rihaczek text (30:133-140).

First consider the case where fb > B. The desired nominal resolution cell i-

defined in terms of the widths across the r and f axes of the ambiguity function's

central spike as in Equation (163). The pedestal sirface of the ambiguity function

can be divided, by the area of the nominal resolution cell to determine the number

N of resolution cells within the pedestal. Thus. the pedestal contains N nominal
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Figure 9. Class 3 Ambiguity Function (a) and Contour Plot (b) (35:217)
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resolution cells where N is expressed as

N TB t-(B'(164)
1TB

Let a represent the value of the scattering function within a resolution cell. If ac

represents the cumulative cross section of the scattering function from each resolu-

tion cell, then the mean cross section of the scattering function in each cell can be

expressed approximately as
am =a(165)

Therefore, if a, represents the cross section value of the scattering function

SDR {rd, fd} at the resolution cell within the central spike of the ambiguity func-

tion, the average S/C can be expressed as

S a cr(TB) (166)

Substituting for N from Equation (164) into Equation (166) yields

S 1 U '(167)

If the minimum signal to clutter ratio S/C is arbitrarily chosen as unity, then Equa-

tion (167) constrains the ratio OsIam to

--- T B (168)
U-rn

Equation (168) shows that to detect the signal with a minimum signal to clutter

ratio of unity, a, must be TB greater than average. In other words, to achieve the

resolution of the nominal resolution cell defined in Equation (163) with S/C = 1, the

scattering function cross section a, must be TB higher than the average cross section

level. Thus, any resolution cell of the scattering function for which a, < (TB x am)
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is completely masked in the self-clutter.

Next, consider the second case where fb < B. For this case, resolution perfor-

mance will improve somewhat. It is easily shown that when fb < B, Equation (167)

can be expressed as

S 1 (169)C-Tf

As in the first case, for a signal to clutter ratio of unity, Equation (169) can

be expressed as

am-- Tf (170)

The form and interpretation of Equation (170) is analogous to that of Equation

(168). To achieve the resolution of the nominal resolution cell defined in Equation

(163) with S/C = 1, the scattering function cross section a, must be Tfb greater

than average. Thus the resolution improves dependent upon the degree of significant

overlap between fb and B.

For either case, it is clear that the thumbtack ambiguity function does not

achieve the desired resolution of the nominal resolution cell. In general, portions of

the scattering function where o, is approximately less than or equal to the mean

value a, are completely masked by the self-clutter; therefore, in a dense target

environment, the true resolution which Class 3 signals achieve is defined by the broad

dimensions of the ambiguity function pedestal. Rihaczek (30:133-140) shows that in

general, the resolution of Class 3 signals in a dense target environment is inferior to

the resolution of a simple unmodulated pulse designated as a Class 1 waveform. For

these reasons, Rihaczek and Siebert state that the inferior resolution performance

of Class 3 radar signals make them in general a poor choice of waveform in a dense

target environment (30- 35). Therefore, Class 3 radar signals are not a-viable option

in comparison to Class 1 radar signals. The final radar signal to consider forms the

so-called bed of nails ambiguity function.
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4.5 Class 4 Radar Signals

Class 4 radar signals form the so-called "bed of nails" ambiguity function.

A uniformly-spaced coherent pulse train as in Figure 10 illustrates the common

example of a Class 4 waveform. The periodic pulse train is essentially a means of

producing a long time-duration signal for improved frequency resolution with a short

time-duration pulse which provides good range resolution. If p(t) represents a single

s(t)

FT1- K

Figure 10. Periodic Pulse Train

complex pulse of duration T with the ambiguity function designated as Xp(T, f) the

complex periodic pulse train, normalized with respect to its energy can be expressed

as

s(/) = Mi/2 E p(t - mTr) (171)
M=O

where T, is the pulse repetition period and M represents the total number of pulses.

To simplify the analysis, the pulse train can be centered at time t = 0 so that p(t)

is expressed as

s~ ~ 't = i~ P (t - mT+ - 17 ~ (172)s t = i-mT + (M - I)T: (72
MI =0

The pulse train of Equation (172) is illustrated in Figure 10 for the common pulse

duration of Af = 3. Using Equation (172) to determine the ambiguity function,
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Blahut (8:6-17-6-18) has shown that the ambiguity function can be expressed as

x~r,f) = 1 (r - m , f) sin [iTrfT (M-Iml)] (173)

,,=-(Z XP sin(rfT,)

If it is assumed that the pulses are of short duration in comparison to the pulse

repetition interval T,, the components of the ambiguity function Xp(r, f) which are

centered at r" = mT, will overlap only with their low sidelobe parts, so to a close

approximation, one can look at each component ambiguity function individually.

The component ambiguity function for one specific value of m can be written as

(M- f\ "= [MnIf( - [fsin nrf (M - ImD Tl (174)
Xr,) M IX r , (M-Im)sinrfT

The first term of Equation (174) within brackets forms a broad triangular envelope

across the T" axis. Within this triangular envelope, the ambiguity function Xp(T, f)

is periodically repeated at each value of m across the r axis. Across the f axis, Xp

forms a broad envelope, and the term

sin 7rf (M - Iml) T, (175)
sin 7rfT ,

samples the broad frequency envelope of Xp at f = k/T, where k is an integer. The

end result is an ambiguity function as illustrated in Figure 11 with fine structure

both across the 'r axis and across the f axis (30:187).

To determine the nominal resolution cell dimensions in terms of the ambigu-

ity function's central spike, the widths across each axis at the origin are measured

according to any of the three resolution criteria. For RTD resolution, let m = 0 and

f = 0 to simplify Equation (174) to

Xm=O(T, 0) = Xp(T, 0) (176)
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Figure 11. Contour Plot of a Class 4 Ambiguity Function (35:217)
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which represents the ambiguity function across the r axis of a single pulse of duration

T; therefore, the RTD resolution width Ar ~ T ~ 1/B is the same as for a single

pulse p(t) of duration T of the coherent pulse train. Similarly, to determine frequency

resolution of the central spike across the f axis, let m = 0 and r = 0 so that

Xm=0(0,f) = xP(0,f) [sin 'MTr] (177)

The first null of Equation (177) occurs at f = 1/MT, = 1/Td; therefore, the DFS

resolution width can be written as

A 1 = (178)
MT, Td

The nominal time-frequency resolution cell is

A-Af 1"' (179)
BTd

Range and radial velocity resolution widths can be expressed respectively as

A.R c (180)
2B

AV - -- (181)2 T4

And therefore, the nominal range-velocity resolution cell can be expressed as

cA 1
ARAV =- × 1 (182)4 XTjdB

Thus, the coherent pulse train provides the range resolution of a single pulse

of duration ' and the improved velocity resolution of a single pulse of duration

Td. The cost of this improved resolution is range and velocity ambiguities as il-

lustrated in Figure 11 where again the ambiguity function O(r,f) is approximated

with a two-dimensional contour plot. Range ambiguities are seen to occur at multi-
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pies of the pulse repetition interval T, and frequency ambiguities are seen to occur

at multiples of lT,.. These range and frequency ambiguities are approximately of

the same magnitude as the central spike; therefore, if targets are present beyond

T, in range or lT, in frequency, significant contributions from targets outside the

nominal resolution cell will degrade resolution in either domain. Typically, coher-

ent pulse trains are employed when the range and velocity extent of the target or

targets of interest is confined to the immediate region surrounding the central spike

of the ambiguity function as illustrated in Figure 12 (30:143). When the targets

are confined to this region, the MFSLR response is of no interest beyond the value

ri corresponding to the outer limit of target range and f, for target velocity. To

create a large "clear" rectangular area about the central spike, one would logically

desire that both range and velocity ambiguities are seperated as much as possible.

However, since the spread in range ambiguity is determined by T,. and the spread in

velocity ambiguity is determined by lIT,., a compromise between range ambiguity

and velocity ambiguity is obviously required. The maximum unambiguous range is

RM = cT (183)
2

and the maximum unambiguous velocity is

A (184)
2Td

The product of the maximum unambiguous range and maximum unambiguous ve-

locity is a constant of the radar expressed as

R.Vm = CA (185)4

Equation (185) illustrates the trade-off required between maximum unambiguous

range and maximum unambiguous veloc;ty. This limitation is especially troublsome
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for the atmospheric sensing lidar operating at a wavelength of 10tm. Substituting

A = 1O m and c = 3 x 10 8m/s gives

RVm =- = ±750- (186)
S

Equation (186) shows that the product RmV is simply too small for most mete-

orological targets of interest using a CO2 lidar. For example, the CTI lidar with

an aerosol range of approximately 5 kilometers will consist of velocity ambiguities

beyond O.0375m/s. Or conversely, the CTI lidar discussed in Section 2.4 can un-

ambiguously detect aerosols of velocities from zero to =35m/s. For Vm = :35m/s,

R. c.- 21.4m These results show that for the case of aerosol imaging, coherent pulse

trains are not in general a viable option for improving combined range and velocity

resolution.

In summary, each of the four classes of radar signals have been evaluated

with respect to their resolution capability. The ambiguity function for each class

of waveform was evaluated in terms of the resolution with which the target scat-

tering function SDR{rd, fdl can be determined. The pulse compression waveforms

designated as Classes 2, 3, and 4 were each compared to the resolution capability

of the simple unmodulated pulse designated as a Class 1 radar signal. In each case,

the pulse compression waveforms did not provide improved resolution performance

in both range and radial velocity simultaneously. As a result, none of the pulse

compression waveforms evaluated represent a viable alternative to the Class 1 radar

signal currently in use in lidar systems.
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V. Conclusions and Recommendations

Results of this thesis effort provide a thorough review of conventional matched-

filter radar theory as it applies to an aerosol sensing lidar. Chapter 2 provided an

historical perspective of lidar development and a brief discussion of current lidar

systems and signal processing techniques. Chapter 3 provided a discussion of the

basic theory of conventional matched-filter radars, the complex aerosol target model,

and the MFSLR response to the aerosol target model. The development of the

MFSro, rzsponse given in Appendix A is considered to be an original result which

provide. 'he MFSLR response to any complex target satisfying the conditions of the

Van Trees target model given in Section 3.4. In Chapter 4, each of the four classes of

radar signals were evaluated in terms of their resolution performance. Each class of

radar signal was evaluated in terms of the resolution with which it could reproduce

the scattering function of the target.

5.1 Conclusions

As a result of this thesis effort, the mean MFSLR response to a dense, aerosol-

target environment can be expressed as

E [ly(rf)I1- N. + Et I SDf{Td, fd}O (r - rd, f - fd) drddfd (187)

where SDR{rd, fdl represents the scattering function of the aerosol target or any

complex target which satisfies the conditions of the Van Trees target model given in

Section 3.4 and where (r-Td, f-fd) represents the squared-modulus, matched-filter

response to-a singe point target with range time- delay Td and Doppler frequency-

shift fd. The MFSLR response derived in Appendix A represents a two-dimensional

convolution of the target scattering function SDR{"d, fd} with the signal ambiguity

function O(r, f). The resolution with which the MFSLR measures the scattering
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function is dependent upon the volume distributions of both the ambiguity function

and the aerosol scattering function. Since the normalized volume of 0(r, f) is always

fixed to equal unity, the four classes of radar waveforms are represented by ambiguity

functions with different distributions of the same volume over the (r, f) plane. In

each case, the waveform's resolution capability with respect to the target scattering

function was evaluated. The pulse compression waveforms designated as Class 2, 3,

and 4 radar signals did not provide an improved resolution capability in comparison

to simple unmodulated pulses designated as Class 1 radar signals currently in use

with aerosol sensing lidars. In conclusion, if a conventional MFSLR is employed,

Class 1 radar signals represent the best choice in terms of resolution performance

and receiver design simplicity.

5.2 Recommendations

The question of whether more sophisticated pulse compression radar signals

provide, 1prroved resolution performance with a conventional, matched-filter radar

has been-,thoroughly res.-arched, and the coi.lusion is that they do not. Class

I radar signals represent the best choice signal for aerosol sensing lidars when a

conventional, matched-filter receiver is employed. However, this thesis effort did not

determine whether the MFSLR represents the optimum receiver design for a dense,

aerosol target environment. It may be possible to make better use of the statistics

of the aerosol target with a more sophisticated receiver design. The many receiver

designs which Dr Van Trees. develops in his text (39) may offer some insight into

more sophisticated receiver designs to achieve better resolution performance.
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Appendix A. Derivation of the MFSLR Response

Consider the schematic of Figure 3 which illustrates an array of matched-filters

followed by square-law envelope detectors. The mean power response of the MFSLR

can be expressed analytically as

E[y(r,f) 2] =E [sr(t) + n(t)] s*(t -,r) exp (-j27rft) dt (188)

Equation (188) can be written as

_B [Iy(,r, f)12] =J {[Sr(t) + n(t)] [s;(u) + 7n*(u)I}

x [s* (t - r) s (u - ) exp [-j27rf (t - u)] dtdu

- I L EB [Sr(t)S;(U) + Sr(t)fl*(U) + s;(u)n(t) + fl(t)fl(u)]

xs*(t - r)s (u - r) exp [-j27rf (t - u)] dtdu (189)

where n(t) is a zero-mean complex white Gaussian noise process due to the shot

noise limited photodetector whose covariance function Cn(,, u) is expressed as

C.(t,u) = E[n(t)n*(u)]

= N,6(t- u) (190)

where N, is the spectral density hv/i7 of the photodetector shot noise limited, white

Gaussian noise process. Taking the expected value of each term within brackets of

Equation (189), the cross-terms E [Sr(t)n*(u)] and E [s*(u)n(t)] go to zero since n(t)

is a zero-mean random process. Therefore, Equation (189) can be written as
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E _I~, f)12] 00I E [Sr(t)s;(U)I s*(t -7-)s (u - 7-) exp f-j27rf (t - u)] dtdu

+ JLE (n(t)n-(u)] s* (t - r)s (u - r) exp [-j27rf (t - u)] dtdu

(191)

Substituting Equation (190) into Equation (191) and simplifying yields

E [IY(T_, f)121 = N0 + JJ' C,,r(t, u~s*(t - r)s (u - -r) exp [-j27rf (t - u)] dtdu

(192)

where C,, is the complex covariance of the received signal expressed as

C",(t, u) = E [S'(t)S*(U)] (193)

and where s,(t) has been normalized. Recall from the Van Trees model, the expres-

sion for the received signal given again as

S,(t) = ? 2  s(t - 'rd)YDR(rd, t - 'r)dd (194)

where "YDR(T'd, t) is a zero-mean complex Gaussian random process whose complex

covariance Cy(t, u) is expressed as

C'(t,U) = E [-YDR(rd, t)yR(r,u)]

= KDR(7-d,t - U) 6(-d - rd) (195)

Substitution of Equation (194) into Equation (193) yields

too

Cr(t,u) = E] ]_ Ct(t, u)s(t - -rd)S*(U - 7rd)drddrd (196)
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Substituting Equation (195) into Equation (196) and simplifying yields

Cs,(t, u) = E, 0 s(t - 'rd)S*(U - rd)KDR(Td, t - u)drd (197)

Recall from Section 3.4, the Fourier transform relation between KDR(rd, a) of Equa-

tion (197) and the scattering function SDR{Td, fd} expressed as

KDR(Td, ae) = 12 SDR{ Td,fd} exp(j27rfda)dfd (198)

Substituting Equation (198) into Equation (197) yields

Csr(t,u) = Et ,S(t -Td)S(u - -d)SDR{ d,fd}

x exp i2/rfd(t - u)] drddfd (199)

Substituting Equation (199) into Equation (192) yields

B[y(,r,f)12] = No + E, IL s* - 7-)s(u -,r) exp [-j27r(f - fd)( - u)]

X JJ .(t - rd) s* (u - 'rd) SDR 17-d, fd}I drd dfd dtdu

(200)

Rearranging terms, Equation (200) can be expressed as

E[iy(r, f)I'] + E J J SDR {-d, fd}

x fo s*(t - T)S(t- rd) exp [-j27r(f - fd)t] dt

x 1'*( - r)s(u - -d) exp [-j27r(f - fd)u] dud7<-ddfd

= N+ EtIL-00SDRd, fd}

x J00 S(t)S* [t - (T - rd)]exp [-j2-r(f - fd)t] dt
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x oo s*(u)s [u - (r - rd)] exp [j27r(f - fd)u] dudrddfd

(201)

Recall the variable translations of Section 3.2 which led to the ambiguity funct"

definition. The variable translations were

I= (202)

f' = f- fh (203)

Substituting Equations (202) ane (203) into Equation (201) yields

[I(r,, f')12] = 'o + C, J / SDR {rd, fd

* 1 s(t)s*(t - r') exp(-j27rf't)dt

x -0 s*(u)s(u - r') exp(j27rf'u)dudTddfd (204)

Recall the ambiguity function definition given as

x(7, f) = j_0 s(t)s*(t - T) exp(-j27rft)dt (205)

where the prime notation has been dropped for convenience. Thus, the squared

modulus of X(I, f) designated as O(r, f) can be expressed as

O(-,f) = Ix(,f)12

= J_2 s(t)s*(t - r) exp(-j27rft)dt

J[soskuj*(ku_ r)cxp( j27rfu)du (206)
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Substituting Equation (206) into Equation (204) yields the final expression for the

MFLSR response given as

.[ly(r, 21lj N, Et SDR {-rd, fd} 0 (r - rd, f - fd) drddfd (207)

Therefore, the mean power response of the MFSLR is in terms of the pho-

todetector shot noise energy N. and a two-dimensional convolution of the scattering

function SDR {rd, fd} with the radar signal ambiguity function (r, f). Equation

(207) is useful for evaluating the MFSLR response in general for an arbitrary radar

ambiguity function and arbitrary distributed tdrget whose backscattered signal is

described as a zero-mean, complex Gaussian random process.
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